DOI QR코드

DOI QR Code

Review and application of environmental DNA (eDNA) investigation of terrestrial species in urban ecosystem

도시 내 육상 생물종 모니터링을 위한 환경DNA 리뷰 및 적용

  • Kim, Whee-Moon (Dept. of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Kim, Seoung-Yeal (Dept. of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Park, Il-Su (Dept. of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Lee, Hyun-Jung (School of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Kim, Kyeong-Tae (School of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Kim, Young (School of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Kim, Hye-Joung (School of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Kwak, Min-Ho (School of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Lim, Tae-Yang (Dept. of Environmental Horticulture and Landscape Architecture, Dankook University) ;
  • Park, Chan (Dept. of Landscape Architecture, University of Seoul) ;
  • Song, Won-Kyong (School of Environmental Horticulture and Landscape Architecture, Dankook University)
  • 김휘문 (단국대학교 환경원예.조경학과 대학원) ;
  • 김성열 (단국대학교 환경원예.조경학과 대학원) ;
  • 박일수 (단국대학교 환경원예.조경학과 대학원) ;
  • 이현정 (단국대학교 환경원예.조경학부) ;
  • 김경태 (단국대학교 환경원예.조경학부) ;
  • 김영 (단국대학교 환경원예.조경학부) ;
  • 김혜정 (단국대학교 환경원예.조경학부) ;
  • 곽민호 (단국대학교 환경원예.조경학부) ;
  • 임태양 (단국대학교 환경원예.조경학과 대학원) ;
  • 박찬 (서울시립대학교 조경학과) ;
  • 송원경 (단국대학교 환경원예.조경학부)
  • Received : 2020.03.19
  • Accepted : 2020.04.23
  • Published : 2020.04.30

Abstract

Scientific trust and quantification of traditional species investigation and results that have been used in ecology for decades has always been a problem and concern for ecologists. Global ecologists have proposed DNA-based species investigation studies to find answers to problems. In this study, we reviewed the global trend of research on environmental DNA(eDNA), which is a method for monitoring species by detecting DNA of organisms naturally mixed in environmental samples such as water, soil, and feces. The first eDNA research confirmed the possibility of species investigation at the molecular level, and commercialization of NGS(Next Generation Sequencing) and DNA metabarcoding elicits efficient and quantitative species investigation results, and eDNA research is increasing in the filed of ecology. In this study, mammals and birds were detected using MiMammal universal primers from 23 samples(3 natural reserves; 20 water bowls) out of 4 patches to verify eDNA for urban ecosystems in Suwon, and eDNA was verified by performing camera trapping and field survey. Most terrestrial species were detected through eDNA, and particularly, mice(Mus musculus), and Vinous-throated Parrotbill (Sinosuthora webbiana) were identified only with eDNA, It has been confirmed to be highly effective by investigating techniques for small and internal species. However, due to the lack of resolution of the primer, weasels(Mustela sibirica) and squirrels(Melanochromis auratus) were not detected, and it was confirmed that the traditional investigation method was effective only for a few species, such as Mogera robusta(Mogera robusta). Therefore, it is judged that the effects of species investigation can be maximized only when eDNA is combined with traditional field survey and Camera trapping to complement each other.

Keywords

References

  1. Andersen, K. KL Bird. M Rasmussen. J Haile. H Breuning-Madsen. KH Kjaer. L Orlando. MTP Gilbert and E Willerslev. 2012. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Molecular Ecology 21(8) : 1966-1979. https://doi.org/10.1111/j.1365-294X.2011.05261.x
  2. Barnes, MA and CR Turnet. 2016. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics. 17 : 1-17. https://doi.org/10.1007/s10592-015-0775-4
  3. Bergmann, GT. JM Craine. MS Robeson 2nd and N Fierer. 2015. Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison). PLoS One 10(11) : e0142409. https://doi.org/10.1371/journal.pone.0142409
  4. Bithell, SL.LTT Tran-Nguyen.MN Hearnden and DM Hartley. 2014. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees. AoB Plants. 7. plu091.
  5. Boessenkool, S.LS Epp. J Haile. E Bellemain. M Edwards. E Coissac. E Willerslev and C Brochmmann. 2012. Blocking Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA. Molecular Ecology. 21(8) : 1806-1815. https://doi.org/10.1111/j.1365-294X.2011.05306.x
  6. Brenner, S. M Johnson. J Bridgham. G Golda. DH Lloyd. D Johnson. S Luo. S McCurdy. M Foy. M Ewan. R Roth. D George. S Eletr. G Albrecht. E Vermaas. SR Williams. K Moon. T Burcham. M Pallas. RB DuBridge. J Kirchner. K Fearon. J Mao and K Corcoran. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnology 18(6) : 630- 634. https://doi.org/10.1038/76469
  7. Caporaso, JG. J Kuczynski. J Stombaugh. K Bittinger. FD Bushman. EK Costello. N Fierer. AG Pea. JK Goodrich. JI Gordon. GA Huttley. ST Kelley. D Knights. JE Koenig. RE Lay. CA Lozupone. D McDonald. BD Muegge. M Pirrung. J Reeder. PJ Turnbaugh and WA Walters. 2010. QIIME allows analysis of highthroughput community sequencing data. Nature Methods. 7(5) : 335-336. https://doi.org/10.1038/nmeth.f.303
  8. Chen, S. Y Zhou. Y Chen and J gu. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17) : i884-i890. https://doi.org/10.1093/bioinformatics/btx692
  9. Civade, R. T Dejean. A Valentini. N Roset. JC Raymond. A Bonin. P Taberlet and D Pont. 2016. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System. PLoS ONE. 11(6): e0157366. https://doi.org/10.1371/journal.pone.0157366
  10. Closek, CJ. JA Santora. HA Starks. ID Schroeder. EA Andruszkiewicz. KM Sakuma. SJ Bograd. EL Hazen. JC Field and AB Boehm. 2019. Marine Vertebrate Biodiversity and Distribution Within the Central California Current Using Environmental DNA (eDNA) Metabarcoding and Ecosystem Surveys. Front. Mar. Sci. 6 : 732. https://doi.org/10.3389/fmars.2019.00732
  11. Clusa, L. L Miralles. A Basanta. C Escot and E Garcia-Vazquez. 2017. eDNA for detection of five highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. PLoS ONE 12(11) : e0188126. https://doi.org/10.1371/journal.pone.0188126
  12. Degle, BE. A Chiaradia. J McInnes and SN Jarman. 2010. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?. Conservation Genetics 11(5) : 2039-2048. https://doi.org/10.1007/s10592-010-0096-6
  13. Dejean, T. A Valentini. A Duparc. S Pellier-Cuit. F Pompanon. P Taberlet and C Miaud. 2011. Persistence of Environmental DNA in Freshwater Ecosystems. PLoS One 6(8) : e23398. https://doi.org/10.1371/journal.pone.0023398
  14. Drummond, AJ. RD Newcomb. TR Buckley. D Xie. A Dopheide. BCM Potter. J Heled. HA Ross. S Grosser. D Park. NJ Demetras. MI Stevens. JC Russell. SH Anderson. A Carter and N Nelson. 2015. Evaluating a multigene environmental DNA approach for biodiversity assessment. Giga-Science. 4(46) : 1-19.
  15. Evans, NT. BP Olds and MA Renshaw. 2016. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Mol. Ecol. Resour. 16(1) : 29-41. https://doi.org/10.1111/1755-0998.12433
  16. Ficetola, GF. C Miaud. F Pompanon and P Taberlet. 2008. Species detection using environmental DNA from water samples. Biology Letters 4(4) : 423-425. https://doi.org/10.1098/rsbl.2008.0118
  17. Ficetola, GF. P Taberlet and E Coissac. 2016. How to limit false positives in environmental DNA and metabarcoding? Molecular Ecology Resources 16(3) : 604-607. https://doi.org/10.1111/1755-0998.12508
  18. Giguet-Covex, C. J Pansu. F Arnaud. PJ Rey. C Griggo. L Gielly. I Domaizon. E Coissac. F David. P Choler. J Poulenard and P Taberlet. 2014. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nature communications. 5 : 3211. https://doi.org/10.1038/ncomms4211
  19. Giovannoni, SJ. TB Britschgi. CL Moyer and KG Field. 1990 Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270) : 60-63 https://doi.org/10.1038/345060a0
  20. Haile, J. R Holdaway. K Oliver. M Bunce. MTP Gilbert. R Nielsen. K Munch. SYW Ho. B Shaprio and E Willerslev. 2007. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Molecular Biology and Evolution. 24(4) : 982-989. https://doi.org/10.1093/molbev/msm016
  21. Harper, LR. LL Handley. AI Carpenter. M Ghazali. CD Muri. CJ Macgregor. TW Logan. A Law. T Breithaupt. DS Read. AD McDevitt and B Hanfling. 2019. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biological Conservation 238 : 108225. https://doi.org/10.1016/j.biocon.2019.108225
  22. Hempel, CA. B Peinert. AJ Beermann. V Elbrecht. JN Macher. TH Macher. G Jacobs and F Leese. 2019. Using environmental DNA to monitor the reintroduction success of the Rhine sculpin (Cottus rhenanus) in a restored stream. PeerJ Preprints 7:e27574v2.
  23. Herbert, PD. A Cywinska. SL Ball and JR DeWaard. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270(1512) : 312-321.
  24. Kim, KT. Y Kim. HJ Kim. SY Kim. WM Kim and WK Song. 2019. Usage of Waterbirds on the Artificial Floating Islands in Reservoir using UAV. J. Korean Env. Res. Tech. 22(5):57-67. (in Korean with English summary)
  25. Kim, SY. WM Kim. WK Song and EJ Hyeong. 2018. Home-range Analysis of Varied Tit (Parus varius) in the Post Fledging Period by Using Radio-tracking. J. Korean Env. Res. Tech. 21(1):95-102. (in Korean with English summary)
  26. Lahoz-Monfort, JJ. G Guillera-Arroita and R Tingley. 2016. Statistical approaches to account for false-positive errors in environmental DNA samples. Molecular Ecology Resources 16(3) : 673-685. https://doi.org/10.1111/1755-0998.12486
  27. Leempoel, K. T Hebert and EA Hadly. 2020. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. Proc. R. Soc. B 287 : 20192353. https://doi.org/10.1098/rspb.2019.2353
  28. Levine, JM. M Vila. CM D'Antonio. JS Dukes. K Grigulis and S Lovorel. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B. 270(1517) : 775-781. https://doi.org/10.1098/rspb.2003.2327
  29. Li, W. L Fu. B Niu. S Wu and J Wooley. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Briefings in Bioinformatics. 13(6) : 656-668. https://doi.org/10.1093/bib/bbs035
  30. Logan, JMJ. KJ Edwards and NA Saunders. 2009. Real-time PCR : current technology and applications. Horizon Scientific Press, Norwich, UK.
  31. Lopes, DM. MD Barba. F Boyer. C Mercier. PJS Filho. LM Heidtmann. D Galiano. BB Kubiak. P Langone. FM Garcias. L Gielly. E Coissac. TRO Freitas and D Taberlet. 2015. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents. Heredity 114(5) : 525-536. https://doi.org/10.1038/hdy.2014.109
  32. Lucek, K. A Galli. S Gurten. N Hohmann. A Maccagni. T Patsiou and Y Willi. 2019. Metabarcoding of honey to assess differences in plantpollinator interactions between urban and non-urban sites. Apidologie 50 : 317-329. https://doi.org/10.1007/s13592-019-00646-3
  33. Kelly, RP. 2016. Making Making environmental DNA count. Molecular ecology resources 16(1) : 10-12. https://doi.org/10.1111/1755-0998.12455
  34. Krishnamurthy, K and AF Robert. 2012. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers. Conserv. 21(8) : 1901-1919. https://doi.org/10.1007/s10531-012-0306-2
  35. Kwok, S and R Higuchi. 1989. Avoiding false positives with PCR. Nature. 339(6221) : 237-238. https://doi.org/10.1038/339237a0
  36. MacDonald, AJ and S Sarre. 2017. A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Molecular Ecology Resources 17(4) : 708-720. https://doi.org/10.1111/1755-0998.12618
  37. Magoc, T and SL, Salzberg. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21) : 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  38. Magurran, AE and BJ McGill. 2011. Biological diversity-frontiers in measurement and assessment. Oxford University Press.
  39. Margulies, M. M Egholm. WE Altman. S Attiya. JS Bader. LA Bemben. J Berka. MS Braverman. YJ Chen. Z Chen. SB Dewell. L Du. JM Fierro. XV Gomes. BC Godwin. W He. S Helgesen. CH Ho. GP Irzyk. SC Jando. MLI Alenquer. TP Jarvie. KB Jirage. JB Kim. JR Knight. JR Lanza. JH Leamon. SM Lefkowitz. M Lei. J Li. KL Lohman. H Lu. VB Makhijani. KE McDade. MP McKenna. EW Myers. E Nickerson. JR Nobile. R Plan. BP Puc. MT Ronan. GT Roth. GJ Sarkis. JF Simons. JW Simpson. M Srinivasan. KR Tartaro. A Tomasz. KA Vogt. GA Volkmer. SH Wang. Y Wang. MP Weinr. P Yu. RF Begley and JM Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057) : 376-380. https://doi.org/10.1038/nature03959
  40. Minamoto, T. M Fukuda. KR Katsuhara. A Fujiwara. S Hidaka and S Yamamoto. 2017. Environmental DNA reflects spatial and temporal jellyfish distribution. PLoS One 12(2) : e0173073. https://doi.org/10.1371/journal.pone.0173073
  41. Ministry of Environment. 2012. Fourth National Survey on Natural Environment. (in Korean).
  42. Ministry of Environment. 2017. Revision of regulations on preparation of environmental impact assessments, etc. (in Korean).
  43. Miya, M. Y Sato. T Fukunaga. T Sado. JY Poulsen. K Sato. T Minamoto. S Yamamoto. H Yamanaka. H Araki. M Kondoh and W Iwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science. 2(7) : 150088. https://doi.org/10.1098/rsos.150088
  44. Mullis, KB and FA Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in enzymology 155 : 335-350. https://doi.org/10.1016/0076-6879(87)55023-6
  45. NIER(National In stitute of En viro nmen ta l Research). 2015. Developing guidelines of biotop maps for spatial planning. South Korea. (in Korean with English summary)
  46. Ogram, A.GS Sayler and T Barkay. 1987. The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods 7(2-3) : 57-66. https://doi.org/10.1016/0167-7012(87)90025-X
  47. Oskam, CL. J Haile. E McLay. P Rigby. ME Allentoft. ME Olsen. C Bengtsson. GH Miller. J-L Schwenninger. C Jacomb. R Walter. A Baynes. J Dortch. M Parker-Peason. MTP Gilbert. RN Holdaway. EWillerslev and M Bunce. 2010. Fossil avian eggshell preserves ancient DNA. Proceedings of the Royal Society B. 277(1690) : 1991-2000. https://doi.org/10.1098/rspb.2009.2019
  48. Pansu, J. C Giguet-Covex. GF Ficetola. L Gielly. F Boyer. L Zinger. F Arnaud. J Poulenard. P Taberlet and P Choler. 2015. Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol. Ecol. 24(7) : 1485-1498. https://doi.org/10.1111/mec.13136
  49. Riaz, T. W Shehzad. A Viari. F Pompanon. P Taberlet and E Coissac. 2011. ecoPrimerts : inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39(21) : e145. https://doi.org/10.1093/nar/gkr732
  50. Patel, S. J Waugh. CD Millar and DM Lambert. 2010. Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Molecular Ecology Resources 10(3) : 431-438. https://doi.org/10.1111/j.1755-0998.2009.02793.x
  51. Pompanon, F. E Coissac and P Taberlet. 2011. Metabarcoding a new way to analyze biodiversity. Biofutur. 319(3) : 30-32.
  52. Potgieter, LJ. M Gaertner. C Kueffer. BMH Larson. SW Livingstone. PJ O’Farrell and DM Richardson. 2017. Alien plants as mediators of ecosystem services and disservices in urban systems: a global review. Biol Invasions 19(12) : 3571-3588. https://doi.org/10.1007/s10530-017-1589-8
  53. Riaz, T. W Shehzad. A Viari. F Pompanon. P Taberlet and E Coissac. 2011. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research 39(21) : e145. https://doi.org/10.1093/nar/gkr732
  54. Rodger, TW and KE Mock. 2015. Drinking water as a source of environmental DNA for the detection of terrestrial wild life species. Conservation Genetics Resources. 7 : 693-696. https://doi.org/10.1007/s12686-015-0478-7
  55. Ruppert, K. RJ Kline. 2019. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation 17: e00547. https://doi.org/10.1016/j.gecco.2019.e00547
  56. Saiki, RK. S Scharf and F Faloona. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732) : 1350-1354. https://doi.org/10.1126/science.2999980
  57. Sales, NG. MB McKenzie. J Drake. LR Harper. SS Browett. I Coscia. OW Wangensteen. C Baillie. E Bryce. DA Dawson. E Ochu. B Hanfling. LL Handley. S Mariani. X Lambin. C Sutherland and AD McDevitt. 2020. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. Journal of Applied Ecology. 57(4) : 707-716. https://doi.org/10.1111/1365-2664.13592
  58. Sato, Y. M Miya. T Fukunaga. T Sado and W Iwasaki. 2018. MitoFish and MiFish Pipeline: A Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA Metabarcoding. Mol. Biol. Evol. 35(6) : 1553-1555. https://doi.org/10.1093/molbev/msy074
  59. Schmidt, DJ. C McDougall. 2018. Complete mitogenomes of five ecologically diverse Australian freshwater fishes. Mitochondrial DNA Part B. 4(1) : 191-193. https://doi.org/10.1080/23802359.2018.1545546
  60. Shapiro, B. 2008. Engineered polymerases amplify the potential of ancient DNA. Trends Biotechnol. 26(6) : 285-287. https://doi.org/10.1016/j.tibtech.2008.03.005
  61. Shendure, J and H ji. 2008. Next-generation DNA sequencing. Nature Biotechnology 26(10) : 1135-1145. https://doi.org/10.1038/nbt1486
  62. Song, WK. 2020. Home Range Analysis of Great Tit (Parus major) before and after Fledging in an Urban Park. J. Korean Env. Res. Tech. 23(1) : 97-106. (in Korean with English summary)
  63. Song, WK. EY Kim and DK Lee. 2012. Measuring Connectivity in Heterogenous Landscapes: a Review and Application. Journal of Environmental Impact Assessment. 21(3) : 391-407. https://doi.org/10.14249/EIA.2012.21.3.391
  64. Song, YK. JH Kim. SY Won and C Park. 2019. Possibility in identifying species composition of fish communities using the environmental DNA metabarcoding technique. J. Korean Env. Res. Tech. 22(6) : 125-138. (in Korean with English summary)
  65. Staley, ZR. JD Chuong. SJ Hill. J Grabuski. S Shokralla. M Hajibabaei and TA Edge. 2018. Fecal source tracking and eDNA profiling in an urban creek following an extreme rain event. Scientific reports 8(14390) : 1-12. https://doi.org/10.1038/s41598-017-17765-5
  66. Stokes, KE. KP O’Neill. WI Montgomery. JTA Dick. CA Maggs and RA McDonald. 2006. The importance of stakeholder engagement in invasive species management: a cross-jurisdictional perspective in Ireland. Biodivers Conserv 15(8) : 2829-2852. https://doi.org/10.1007/s10531-005-3137-6
  67. Taberlet, P. E Coissac. M Hajibabaei and LH Rieseberg. 2012a. Environmental DNA. Molecular Ecology 21(8) : 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
  68. Taberlet, P. S Prud'homme. E Campione. J Roy. C Miquel. W Shehzad. L Gielly. D Rioux. P Choler. JC Clement. C Melodellima. F Pompanon and E Coissac. 2012b. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21(8) : 1816-1820. https://doi.org/10.1111/j.1365-294X.2011.05317.x
  69. Tarberlet, P. A Bonin. L Zinger and E Coissac. 2018. Environmental DNA : For Biodiversity Research and Monitoring. Oxford Univ Press.
  70. Turner, CR. KL Uy. RC Everhart. 2015. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation 183 : 93-102. https://doi.org/10.1016/j.biocon.2014.11.017
  71. Ushio, M. H Fukuda. T Inoue. K Makoto. O Kishida. K Sato. K Murata. M Nikaido. T Sado. Y Sato. M Takeshita. W Iwasaki. H Yamanaka. M Kondoh and M Miya. 2017. Environmental DNA enables detection of terrestrial mammals from forest pond water. Mol. Ecol. Resour. 17(6) : e63-e75. https://doi.org/10.1111/1755-0998.12690
  72. Valentini, A. C Miquel and MA Nawaz. 2009. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol. Ecol. 9(1) : 51-60. https://doi.org/10.1111/j.1755-0998.2008.02352.x
  73. Valentini, A. P Taberlet. C Miaud. R Civade. J Herder. PF Thomsen. E Bellemain. A Besnard. E Coissac. F Boyer. C Gaboriaud. P Jean. N Poulet. N Roset. GH Copp. P Geniez. D Pont. C Argillier. JM Baudoin. T Peroux. AJ Crivelli.A Olivier. M Acqueberge. M Le Brun. PR Moller. E Willerslev and T Dejean. 2016. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25(4) : 929-942. https://doi.org/10.1111/mec.13428
  74. Valiere, N and P. Taberlet. 2000. Urine collected in the field as a source of DNA for species and individual identification. Mol. Ecol. Resour. 9(12) : 2150-2152. https://doi.org/10.1046/j.1365-294X.2000.11142.x
  75. Watson, JD and FHC Crick. 1953. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 171(4356) : 737-738. https://doi.org/10.1038/171737a0
  76. Willerslev, E. AJ Hansen and J Binladen. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300(5620) : 791-795. https://doi.org/10.1126/science.1084114
  77. Yang, C. X Wang. JA Miller. M de Blecourt. Y Ji. C Yang. RD Harrsion and DW Yu. 2014. Using metabarcoding to ask if easily collected soil and leaf-litter samples can be used as a general biodiversity indicator. Ecological Indicators. 46 : 379-389. https://doi.org/10.1016/j.ecolind.2014.06.028
  78. Zhang, H. S Yoshizawa. W Iwasaki and W Xian. 2019. Seasonal Fish Assemblage Structure Using Environmental DNA in the Yangtze Estuary and Its Adjacent Waters. Front. Mar. Sci. 6 : 515. https://doi.org/10.3389/fmars.2019.00515
  79. Zhang, Z. S Schwartz. L Wagner and W Miller. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational biology 7(1-2) : 203-214. https://doi.org/10.1089/10665270050081478
  80. Zinger, L. J Chave. E Coissac. A Iribar. E Louisanna. S Manzi. V Schilling. H Schimann. G Sommeria-Klein and P Taberlet. 2016. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology & Biochemistry. 96 : 16-19. https://doi.org/10.1016/j.soilbio.2016.01.008