DOI QR코드

DOI QR Code

A mathematical approach for the effect of the rotation on thermal stresses in the piezo-electric homogeneous material

  • Ramady, Ahmed (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Dakhel, B. (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Balubaid, Mohammed (Department of Industrial Engineering, King Abdulaziz University) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied Studies, King Abdulaziz University)
  • Received : 2020.02.16
  • Accepted : 2020.04.30
  • Published : 2020.05.25

Abstract

In this work, the analytical solution for the stresses in piezo-thermo-elastic homogeneous, transversely isotropic material under the effect of the rotation has investigated. The thermoelasticity theory has used to study the problem. The material subjected to boundary conditions. Finally, the numerical solution has carried out piezo - thermo-elastic material under the effect of rotation, to illustrate the analytical development. The corresponding simulated results of various physical quantities such as the displacements and the stresses, the temperature and the electrical displacement have presented graphically.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant No. (662 - 81 - D1439). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. Abd-Alla, A.M. and Mahmoud, S.R. (2010), "Magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow cylindrical under the hyperbolic heat conduction model", Meccanica, 45(4), 451-462. https://doi.org/10.1007/s11012-009-9261-8.
  2. Abd-Alla, A.M. and Mahmoud, S.R. (2012), "Analytical solution of wave propagation in non-homogeneous orthotropic rotating elastic media", J. Mech. Sci. Technol., 26(3), 917-926. https://doi.org/10.1007/s12206-011-1241-y.
  3. Abd-Alla, A.M. and Mahmoud, S.R. (2013), "On problem of radial vibrations in non-homogeneity isotropic cylinder under influence of initial stress and magnetic field", J. Vib. Control, 19(9), 1283-1293. https://doi.org/10.1177/1077546312441043.
  4. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  5. Adda Bedia, W., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.Sh. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  6. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  7. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  8. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  9. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
  10. Asghar, S., Naeem, M.N., Hussain, M. and Tounsi, A. (2020b), "Nonlocal vibration of DWCNTs based on Flugge shell model using wave propagation approach", Steel Compos. Struct., 34(4), 599-613. https://doi.org/10.12989/scs.2020.34.4.599.
  11. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020a), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  12. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  13. Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
  14. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
  15. Bakhti, K., Sekkal, M., Adda Bedia, E.A. and Tounsi, A. (2020), "Influence of material composition on buckling response of FG plates using a simple plate integral model", Smart Struct. Syst., 25(4), 447-457. https://doi.org/10.12989/sss.2020.25.4.447.
  16. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  17. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  18. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  19. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  20. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  21. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  22. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  23. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  24. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  25. Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  26. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  27. Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-Magneto-Elastic response of Laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3, 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.
  28. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  29. Faleh, N.M., Fenjan, R.M. and Ahmed, R.A. (2020), "Forced vibrations of multi-phase crystalline porous shells based on strain gradient elasticity and pulse load effects", J. Vib. Eng. Technol., 1-9. https://doi.org/10.1007/s42417-020-00203-8.
  30. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  31. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  32. Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Model., 65, 303-317. https://doi.org/10.1016/j.apm.2018.08.014.
  33. Hussain, M. and Naeem, M.N. (2019), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B: Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  34. Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled FG cylindrical shell", Advances in Computational Design. (Accepted)
  35. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  36. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  37. Kaddari, M., Kaci, A., Bousahla, A.A.,Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  38. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  39. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  40. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  41. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  42. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  43. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
  44. Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L. and Sebaey, T.A. (2020), "Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects", Smart Structures and Systems. (Accepted)
  45. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020),"Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135, 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  46. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  47. Mahmoud, S.R. (2010), "Wave propagation in cylindrical poroelastic dry bones", Appl. Math. Inform. Sci., 4(2), 209-226.
  48. Mahmoud, S.R. (2011), "Effect of rotation and magnetic field through porous medium on Peristaltic transport of a Jeffrey fluid in tube", Math. Prob. Eng., 2011, Article ID 971456, 13. http://dx.doi.org/10.1155/2011/971456.
  49. Mahmoud, S.R. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47(7), 1561-1579. https://doi.org/10.1007/s11012-011-9535-9.
  50. Mahmoud, S.R. (2013), "On problem of Shear waves in a magneto-elastic half-space of initially stressed a non-homogeneous anisotropic material under influence of rotation", Int. J. Mech. Sci., 77(12), 269-276.https://doi.org/10.1016/j.ijmecsci.2013.10.004.
  51. Mahmoud, S.R. (2014), "Analytical solution for free vibrations of elastodynamic orthotropic hollow sphere under the influence of rotation", J. Comput. Theo. Nanosci., 11(1), 137-146. https://doi.org/10.1166/jctn.2014.3328.
  52. Mahmoud, S.R. (2016), "An analytical solution for effect of initial stress, rotation, magnetic field and a periodic loading in thermo-viscoelastic homogeneity medium with a spherical cavity", Mech. Adv. Mater. Struct., 23(1), 1-7. https://doi.org/10.1080/15376494.2014.884659.
  53. Mahmoud, S.R., Alzahrani, A.K., Ghandourah, E. and Ghaleb, S.A. (2017), "Mathematical model for problem of stresses in thermo- magneto-piezoelectric material", Appl. Math. Inform. Sci., 11(4), 1217-1223. https://doi.org/10.18576/amis/110429.
  54. Malikan, M. (2018), "Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory", J. Appl. Comput. Mech., 4(1), 1-15. https://doi.org/10.22055/jacm.2017.21820.1117.
  55. Malikan, M. (2019), "On the buckling response of axially pressurized nanotubes vased on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/jacm.2018.25507.1274.
  56. Mehar, K. and Panda, S. (2018a), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
  57. Mehar, K. and Panda, S. (2018b), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  58. Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mechanica, 231, 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  59. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  60. Mirjavadi, S.S., Forsat, M. and Badnava, S. (2019), "Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models", Biomech. Model. Mechanobiol., 19, 971-983. https://doi.org/10.1007/s10237-019-01265-8.
  61. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  62. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  63. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  64. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018...165.
  65. Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  66. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  67. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  68. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  69. Sharma, J.N. and Kumar, M. (2000), "Plane harmonic waves in piezo-thermoelastic materials", J. Eng. Mater. Sci., 7, 434-442.
  70. Sharma, J.N. and Othman, I.A. (2007), "Effect of rotation on generalized thermoviscoelastic Rayleigh-Lamb waves", Int. J. Solid. Struct., 44, 4243-4255. https://doi.org/10.1016/j.ijsolstr.2006.11.016.
  71. Sharma, J.N. and Pal, M. (2004), "Lamb wave propagation in transversely isotropic piezothermoelastic plate", J. Sound Vib., 270, 587-610. https://doi.org/10.1016/S0022-460X(03)00093-2.
  72. Sharma, J.N. and Thakur, M. (2006), "Effect of rotation on Rayleigh Lamb waves in magneto-thermoelastic media", J. Sound Vib., 296, 871-887. https://doi.org/10.1016/j.jsv.2006.03.014.
  73. Sharma, J.N. and Walia, V. (2006), "Straight and circular crested Lamb waves in generalized piezothermoelastic plates", J. Therm. Stress., 29(6), 529-551. https://doi.org/10.1080/01495730500373552.
  74. Sharma, J.N. and Walia, V. (2008a), "Effect of rotation on Rayleigh waves in piezothermoelastic half space", Int. J. Solid. Struct., 44, 1060-1072. https://doi.org/10.1016/j.ijsolstr.2006.06.005.
  75. Sharma, J.N. and Walia, V. (2008b), "Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space", Int. J. Eng. Sci., 46, 131-146. https://doi.org/10.1016/j.ijengsci.2007.10.003.
  76. Shinde, D., Katariya, P.V., Mehar, K., Khan, M.R., Panda, S.K. and Pandey, H.K. (2018), "Experimental training of shape memory alloy fibres under combined thermomechanical loading", Struct. Eng. Mech., 68(5), 519-526. https://doi.org/10.12989/sem.2018.68.5.519.
  77. Singh, V.K. and Panda, S.K. (2013), "Linear static and free vibration analyses of laminated composite spherical shells", ASME 2013 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2013-3712.
  78. Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. https://doi.org/10.12989/sss.2015.16.5.853.
  79. Singh, V.K. and Panda, S.K. (2017), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Control, 23(13), 2078-2093. https://doi.org/10.1177/1077546315609988.
  80. Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233(5), 1601-1619. https://doi.org/10.1177/0954406218774362.
  81. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020.
  82. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016b), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solid., 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006.
  83. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020a), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  84. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020b), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.
  85. Ting, T.C.T. (2004), "Surface waves in a rotating anisotropic elastic half space", Wave Motion, 40, 329-346. https://doi.org/10.1016/j.wavemoti.2003.10.005.
  86. Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019, "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., 1(1), 1-19. https://doi.org/10.12989/cme.2019.1.1.001.
  87. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  88. Yang, J.S. (2003), Piezoelectric Vibratory Gyroscopes, Mechanics of Electromagnetic Solids, Springer, Boston, MA.
  89. Yang, J.S. (2005), "A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscope", IEEE Tran. Ultrason. Ferroelec. Frequen. Control, 52(5), 698-706. https://doi.org/10.1109/TUFFC.2005.1503958.
  90. Yang, J.S. and Fang, H.Y. (2002), "Analysis of a rotating elastic beam with piezoelectric films as an angular rate sensor", IEEE Tran. Ultrason. Ferroelec. Frequen. Control, 49(6), 798-804. https://doi.org/10.1109/TUFFC.2002.1009338.
  91. Yang, J.S. and Fang, H.Y. (2003), "A piezoelectric gyroscope based on extensional vibrations of rods", Int. J. Appl. Electromagnetic Mech., 17, 289-300. https://doi.org/10.3233/JAE-2003-266.
  92. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  93. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  94. Zhou, Y.H. and Jiang, Q. (2001), "Effects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half space", J. Math. Phys., 52, 950-965. https://doi.org/10.1007/PL00001589.

Cited by

  1. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.593