DOI QR코드

DOI QR Code

Quantitative analysis of water-soluble vitamins and polyphenolic compounds in tomato varieties (Solanum lycopersicum L.)

토마토(Solanum lycopersicum L.) 품종 간 수용성 비타민과 폴리페놀계 성분 함량 변이 분석

  • Kim, Daen (Department of Horticultural Bioscience, Pusan National University) ;
  • Son, Beunggu (Department of Horticultural Bioscience, Pusan National University) ;
  • Choi, Youngwhan (Department of Horticultural Bioscience, Pusan National University) ;
  • Kang, Jumsoon (Department of Horticultural Bioscience, Pusan National University) ;
  • Lee, Yongjae (Department of Horticultural Bioscience, Pusan National University) ;
  • Je, Beungil (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Younghoon (Department of Horticultural Bioscience, Pusan National University)
  • 김다은 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 손병구 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 최영환 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 강점순 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 이용재 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 제병일 (부산대학교 생명자원과학대학 원예생명과학과) ;
  • 박영훈 (부산대학교 생명자원과학대학 원예생명과학과)
  • Received : 2020.01.13
  • Accepted : 2020.01.23
  • Published : 2020.03.31

Abstract

Tomato fruit quality is determined by the contents of various functional metabolites in addition to fruit appearance. To develop tomato cultivars with higher amounts of functional compounds, an efficient quantification method is required to identify the natural variations in the compounds in the tomato germplasm. In this study, we investigated tomato varieties, which included 23 inbred lines and 12 commercial F1 cultivars, for their contents of seven watersoluble vitamins (vitamin C, vitamins B1, B2, B3, B5, B6, and B9) and five polyphenolic compounds (quercetin, rutin, kaempferol, myricetin, and naringenin chalcone). The results of high performance liquid chromatography and liquid chromatography-mass spectrometry showed that vitamin C and naringenin chalcone were the major water-soluble vitamins and polyphenolic compounds, respectively, and their abundance was highly variable depending on the cultivar. By contrast, the contents of vitamin B1, quercetin, and kaempferol were lowest among the cultivars. With regard to the relationship between metabolic compounds and fruit characteristics, a significant association was found in fruit size, indicating that cherry tomato varieties contain higher amounts of the compounds compared to large fresh-type varieties. However, no direct association was detected in fruit color, except for naringenin chalcone. The results of this study provide new insights on the quantification of metabolic compounds and the selection of breeding materials, which are prerequisites for the development of functional tomato varieties.

기능성 성분이 향상된 토마토 품종 개발을 위해서는 성분 정량분석법과 토마토 유전자원 간 대사성분 변이에 대한 정보의 확보가 필요하다. 본 연구에서는 토마토 유전자원23개 계통과 12개 상용 F1 품종을 이용하여 수용성 비타민 7종(vitamin C, B1, B2, B3, B5, B6, B9)과 폴리페놀계 성분 5종(quercetin, rutin, kaempferol, myricetin, and naringenin chalcone)에 대한 함량을 비교 분석 하였다. HPLC와 LC-MS 분석 결과, 수용성 비타민과 폴리페놀계의 주요 성분으로 vitamin C와 naringenin chalcone이 각각 검출되었으며 품종 간 높은 수준의 함량 변이가 존재함을 알 수 있었다. 반면에 vitamin B1, quercetin 과 kaempferol은 전 품종에 있어 함량이 가장 낮았다. 대사성분 함량과 토마토 과실특성 간 상관관계에 있어 서 과크기(과중)와 높은 유의성이 관찰되었는데 대부분의 성분에 있어 방울토마토 품종이 완숙용 토마토 품종보다 높은 함량을 보였다. 하지만 naringenin chalcone을 제외하고 대사성분과 과색 간의 상관관계는 뚜렷하게 나타나지 않았다. 본 결과는 토마토 육종과정에 활용될 수 있는 효율적인 대사성분 정량분석법을 제시할 뿐만 아니라 기능성 성분 고함량 육종소재 선발에 중요한 정보를 제공한다.

Keywords

References

  1. Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M and Schreiber L (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5:e1000777 https://doi.org/10.1371/journal.pgen.1000777
  2. Agarwal S and Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163:739-744
  3. Anna V, Olga J and Alexander M (2010) Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography. Rapid Commun Mass Spectrometry 24:2986-2992 https://doi.org/10.1002/rcm.4731
  4. Ballester AR, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernandez-Moreno J and Ykema M (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71-84 https://doi.org/10.1104/pp.109.147322
  5. Breksa III AP, Robertson LD, Labate JA, King BA, King DE (2015) Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. J Food Compos Anal 42:16-25 https://doi.org/10.1016/j.jfca.2015.02.011
  6. Choi SH, Kim DS, Kozukue N, Kim HJ, Nishitani Y, Mizuno M, and Friedman M (2014) Protein, free amino acid, phenolic, ${\beta}$-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. J Food Compos Anal 34:115-127 https://doi.org/10.1016/j.jfca.2014.03.005
  7. Gahler S, Otto K and Bohm V (2003) Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J Agr Food Chem 51:7962-7968 https://doi.org/10.1021/jf034743q
  8. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN and Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161 https://doi.org/10.1038/81137
  9. Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics
  10. Fotsing L, Fillet M, Bechet I, Hubert P and Crommen J (1997) Determination of six water-soluble vitamins in a pharmaceutical formulation by capillary electrophoresis. J Pharm Biomed Anal 15:1113-1123 https://doi.org/10.1016/S0731-7085(96)02010-9
  11. Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379-392 https://doi.org/10.1007/BF02859492
  12. Jo JS, Choi HS and Lee JG (2014) Variation of major carotenoid contents among tomato breeding lines using rapid analysis techniques. J Agric Life Sci 43:12-17
  13. Kwak BM, Lee KW, Ahn JH and Kong UY (2004) Simultameous Determination of Vitamin A and E in Infant Formula by Rapid Extraction and HPLC with Photodiode Array Detection. Korean J Food Sci Technol 36:189-195
  14. Kim DS, Choi SH, Kim DH (2011) Comparison of ascorbic acid, lycopene, ${\beta}$-carotene and ${\alpha}$-carotene contents in processed tomato products, tomato cultivar and part. Korean J Culinary Research 17:263-272
  15. Kim HR and Ahn JB (2014) Antioxidative and anticancer activities of the betatini cultivar of cherry tomato (Lycopersicon esculentum var. cerasiforme) extract. Food Eng Prog 18:359-365 https://doi.org/10.13050/foodengprog.2014.18.4.359
  16. Kim SH, Ban KN, Lee LD, Lee YJ, Lee JH, Lee SH and Kang TS (2013) Simultaneous determination of water soluble vitamins B group in health functional foods etc. by HPLC. J Food Hyg Saf 30:143-149 https://doi.org/10.13103/JFHS.2015.30.2.143
  17. Na HS, Kim JY, Yun SH, Park HJ, Choi GC, Yang SI, Lee JH and Cho JY (2013) Phytochemical contents of agricultural products cultivated by region. Korean J Food Preserv 20:451-458 https://doi.org/10.11002/kjfp.2013.20.4.451
  18. Martinez-Valverde I, Periago MJ, Provan G and Chesson A (2002) Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J Sci Food Agr 82:323-330 https://doi.org/10.1002/jsfa.1035
  19. Meena OP and Bahadur V (2015) Genetic associations analysis for fruit yield and its contributing traits of indeterminate tomato (Solanum lycopersicum L.) germplasm under open field condition. J Agr Sci-Cambridge 7:148
  20. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J and de Vos CHR. (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205-1218 https://doi.org/10.1104/pp.106.078428
  21. Fernandez-Moreno JP, Tzfadia O, Forment J, Presa S, Rogachev I, Meir S and Granell A (2016) Characterization of a new pink fruit tomato mutant result in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiol 171:1821-1836 https://doi.org/10.1104/pp.16.00282
  22. Park S (2012) Determination of polyphenol levels variation in Capsicum annuum L. cv. Chelsea (yellow bell pepper) infected by anthracnose (Colletotrichum gloeosporioides) using liquid chromatography-tandem mass spectrometry. Food Chem 130:981-985 https://doi.org/10.1016/j.foodchem.2011.08.026
  23. Hanson P, Schafleitner R, Huang SM, Tan C W, Ledesma D and Yang RY (2014) Characterization and mapping of a QTL derived from Solanum habrochaites associated with elevated rutin content (quercetin-3-rutinoside) in tomato. Euphytica 200:441-454 https://doi.org/10.1007/s10681-014-1180-7
  24. Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M and van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275-285 https://doi.org/10.1104/pp.110.167577
  25. Santos J, Mendiola JA, Oliveira MB, Ibanez E, Herrero M (2012) Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. J Chromatogr 1261:179-188 https://doi.org/10.1016/j.chroma.2012.04.067
  26. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F and Willmitzer L (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447-454 https://doi.org/10.1038/nbt1192
  27. Seo JB, Shin GH, Jang MH, Lee YS, Jung HJ, Yoon BK and Choi KJ (2013) Breeding of black tomato 'Hei' for protected cultivation. Kor J Hort Sci Technol 31:833-836
  28. Son CY, Jung YJ, Lee IH, Kyoung JH, Lee JS and Kang KK (2011) Studies on Genetic Variation of Soluble Solids, Acidity and Carotenoid Contents in Tomato Fruits from Germplasm. Korean J Plant Resour 24:195-199 https://doi.org/10.7732/kjpr.2011.24.2.195
  29. Stevens R, Buret M, Garchery C, Carretero Y and Causse M (2006) Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. J Agr Food chem 54:6159-6165 https://doi.org/10.1021/jf061241e
  30. Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Lean MEJ, Crozier A (2000) Occurrence of flavonols in tomatoes and tomato-based products. J Agric Food Chem 48:2663-2669 https://doi.org/10.1021/jf000070p
  31. Tyagi K, Upadhyaya P, Sarma S, Tamboli V, Sreelakshmi Y and Sharma R (2015) High performance liquid chromatography coupled to mass spectrometry for profiling and quantitative analysis of folate monoglutamates in tomato. Food Chem 179:76-84 https://doi.org/10.1016/j.foodchem.2015.01.110
  32. Vallverdu-Queralt A, Jauregui O, Medina-Remon A, Andres-Lacueva C and Lamuela-Raventos RM (2010) Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Sp 24: 2986-2992 https://doi.org/10.1002/rcm.4731
  33. Willits MG, Kramer CM, Prata RTN, De Luca V, Potter BG, Steffens JC, Graser G (2005) Utilization of the genetic resources of wild tomato species to create a nontransgenic high flavonoid tomato. J Agric Food Chem 53:1231-1236 https://doi.org/10.1021/jf049355i
  34. Yuan Y, Capps JO, Nayga RM (2009) Assessing the demand for a functional food product: is there cannibalization in the orange juice category. Agr Resour Econ Rev 38:153 https://doi.org/10.1017/S1068280500003178