DOI QR코드

DOI QR Code

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid (School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Si-Kwan (Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Cha, Kyu-Min (Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Jeong, Min-Sik (Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University) ;
  • Ghosh, Prachetash (School of Pharmacy, Sungkyunkwan University) ;
  • Rhee, Dong-kwon (School of Pharmacy, Sungkyunkwan University)
  • Received : 2019.01.15
  • Accepted : 2019.05.17
  • Published : 2020.07.15

Abstract

Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

Keywords

References

  1. Song J-H, Kim K-J, Choi S-Y, Koh E-J, Park J, Lee B-Y. Korean ginseng extract ameliorates abnormal immune response through the regulation of inflammatory constituents in Sprague-Dawley rat subjected to environmental heat stress. J Ginseng Res 2019 Apr;43(2):252-60. https://doi.org/10.1016/j.jgr.2018.02.003.
  2. Hong BN, Do MH, Her YR, Lee YR, Kang TH. The Effects of Panax ginseng and Panax quinquefolius on thermoregulation in animal models. Evid Based Complement Alternat Med 2015;8. https://doi.org/10.1155/2015/748041.
  3. Park KS, Park KI, Kim JW, Yun YJ, Kim SH, Lee CH, Park JW, Lee JM. Efficacy and safety of Korean red ginseng for cold hypersensitivity in the hands and feet: a randomized, double-blind, placebo-controlled trial. J Ethnopharmacol 2014;2:25-32.
  4. Kang J, Lee N, Ahn Y, Lee H. Study on improving blood flow with Korean red ginseng substances using digital infrared thermal imaging and Doppler sonography: randomized, double blind, placebo-controlled clinical trial with parallel design. J Tradit Chin Med 2013;33(1):39-45. https://doi.org/10.1016/S0254-6272(13)60098-9
  5. Ping FW, Keong CC, Bandyopadhyay A. Effects of acute supplementation of Panax ginseng on endurance running in a hot & humid environment. Indian J Med Res 2011;133(1):96-102.
  6. Cho HT, Kim JH, Lee JH, Kim YJ. Effects of Panax ginseng extracts prepared at different steaming times on thermogenesis in rats. J Ginseng Res 2017;41(3):347-52. https://doi.org/10.1016/j.jgr.2016.07.001
  7. Hong HD, Kim YC, Choi SY, Rho J, Lee YC, Seo JY. Effects of Korean ginseng (Panax ginseng, C. A. Meyer) extracts on rat exposed to heat environment. J Ginseng Res 2006;30(4):199-205. https://doi.org/10.5142/JGR.2006.30.4.199
  8. Jiang J-F, Wang Y-G, Hu J, Lei F, Kheir MM, Wang XP, Chai Y-S, Yuan Z-Y, Lu X, Xing D-M, et al. Novel effect of berberine on thermoregulation in mice model induced by hot and cold environmental stimulation. PLoS One 2013;8(1). https://doi.org/10.1371/journal.pone.0054234.
  9. Kim DH, Lee SR, Kim SH. Effect of body & head of Korean red ginseng and western ginseng on body temperature, pulse rate, and the hematological changes in rat treated with heat & cold stimuli. Korean J Orient Physiol Pathol 1995;10:197-215.
  10. Park EY, Kim MH, Kim EH, Lee EK, Park IS, Yang DC, Jun HS. Efficacy comparison of Korean ginseng and American ginseng on body temperature and metabolic parameters. Am J Chin Med 2014;42(1):173-87. https://doi.org/10.1142/S0192415X14500128
  11. Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004;27(8):489-95. https://doi.org/10.1016/j.tins.2004.06.005
  12. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7(1):65-74. https://doi.org/10.2174/157015909787602823
  13. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M. Proteome analysis of human substantia nigra in Parkinson's disease. Proteomics 2004;4(12):3943-52. https://doi.org/10.1002/pmic.200400848
  14. McGrath LT, McGleenon BM, Brennan S, McColl D, McILroy S, Passmore AP. Increased oxidative stress in Alzheimer's disease as assessed with 4- hydroxynonenal but not malondialdehyde. QJM 2001;94(9):485-90. https://doi.org/10.1093/qjmed/94.9.485
  15. Madrigal JL, Garcia-Bueno B, Caso JR, Perez-Nievas BG, Leza JC. Stress-induced oxidative changes in brain. CNS Neurol Disord Drug Targets 2006;5(5):561-8. https://doi.org/10.2174/187152706778559327
  16. Lee W, Moon M, Kim HG, Lee TH, Oh MS. Heat stress-induced memory impairment is associated with neuroinflammation in mice. J Neuroinflammation 2015;12:102. https://doi.org/10.1186/s12974-015-0324-6
  17. Lee S, Lee SO, Kim G-L, Rhee DK. Estrogen receptor-${\beta}$ of microglia underlies sexual differentiation of neuronal protection via ginsenosides in mice brain. CNS Neurosci Ther 2018;24(10):930-9. https://doi.org/10.1111/cns.12842
  18. Nguyen CT, Luong TT, Kim G-L, Pyo S, Rhee DK. Korean red ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 2015;39(1):69-75. https://doi.org/10.1016/j.jgr.2014.06.005
  19. Kim K-J, Yoon K-Y, Hong H-D, Lee B-Y. Role of the red ginseng in defense against the environmental heat stress in Sprague Dawley rats. Molecules 2015;20(11):20240-53. https://doi.org/10.3390/molecules201119692
  20. Kopalli SR, Cha K-M, Lee S-H, Ryu J-H, Hwang S-Y, Jeong M-S, Sung J-H, Kim SK. Pectinase-treated Panax ginseng protects against chronic intermittent heat stress-induced testicular damage by modulating hormonal and spermatogenesis-related molecular expression in rats. J Ginseng Res 2017;41(4):578-88. https://doi.org/10.1016/j.jgr.2016.12.001
  21. Kim EH, Kim IH, Lee MJ, Thach Nguyen C, Ha JA, Lee SC, Choi S, Choi KT, Pyo S, Rhee DK. Anti-oxidative stress effect of red ginseng in the brain is mediated by peptidyl arginine deiminase type IV (PADI4) repression via estrogen receptor (ER) ${\beta}$ up-regulation. J Ethnopharmacol 2013;148(2):474-85. https://doi.org/10.1016/j.jep.2013.04.041
  22. Kim EH, Kim IH, Ha JA, Choi KT, Pyo S, Rhee DK. Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4. J Ginseng Res 2013;37(3):315-23. https://doi.org/10.5142/jgr.2013.37.315
  23. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol 2013;244:11-21. https://doi.org/10.1016/j.expneurol.2011.09.033
  24. Hwang SY, Kim WJ, Wee JJ, Choi JS, Kim SK. Panax ginseng improves survival and sperm quality in Guinea pigs exposed to 2,3,7,8-tetrachlorodibenzo- pdioxin. BJU Int 2004;94(4):663-8. https://doi.org/10.1111/j.1464-410X.2004.05019.x
  25. Geboes K, Riddell R, Ost A, Jensfelt B, Persson T, Lofberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut 2000;47(3):404-9. https://doi.org/10.1136/gut.47.3.404
  26. Madhava-Rao KV, Sresty TV. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 2000;157(1):113-28. https://doi.org/10.1016/S0168-9452(00)00273-9
  27. Yan Y, Kolachala V, Dalmasso G, Nguyen H, Laroui H, Sitaraman SV, Merlin D. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One 2009;4(6):e6073. 29. https://doi.org/10.1371/journal.pone.0006073
  28. Lee YM, Yoon H, Park HM, Song BC, Yeum KC. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J Ginseng Res 2017;41(2):113-9. https://doi.org/10.1016/j.jgr.2016.03.003
  29. Galijasevic S, Saed GM, Diamond MP, Abu-Soud HM. Myeloperoxidase upregulates the catalytic activity of inducible nitric oxide synthase by preventing nitric oxide feedback inhibition. Proc Natl Acad Sci USA 2003;100(25):14766-71. https://doi.org/10.1073/pnas.2435008100
  30. Simonian PL, Grillot DA, Merino R, Nunez G. Bax can antagonize Bcl-XL during etoposide and cisplatin-induced cell death independently of its heterodimerization with Bcl-XL. J Biol Chem 1996;271(37):22764-72. 13. https://doi.org/10.1074/jbc.271.37.22764
  31. Vedunova MV, Mishchenko TA, Mitroshina EV, Mukhina IV. TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor. Oxid Med Cell Longev 2015. https://doi.org/10.1155/2015/453901.453901.
  32. Sugiyama N, Barros RPA, Warner M, Gustafsson JA. $ER{\beta}$: recent understanding of estrogen signalling. Trends Endocrinol Metab 2010;21(9):545-52. https://doi.org/10.1016/j.tem.2010.05.001
  33. Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 2007;292(1):37-46. https://doi.org/10.1152/ajpregu.00668.2006
  34. Lee S, Rhee DK. Effects of ginseng on stress-related depression, anxiety, and the hypothalamicepituitaryeadrenal axis. J Ginseng Res 2017;41:589-94. https://doi.org/10.1016/j.jgr.2017.01.010
  35. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 1993;11(2):371-86. https://doi.org/10.1016/0896-6273(93)90192-t
  36. Choi JH, Lee MJ, Jang M, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala. J Ginseng Res 2018;42(1):107-15. https://doi.org/10.1016/j.jgr.2017.04.012
  37. Ning Q, Liu Z, Wang X, Zhang R, Zhang J, Yang M, Sun H, Han F, Zhao W, Zhang X. Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neurol Res 2017;39(4):357-66. https://doi.org/10.1080/01616412.2017.1281197
  38. Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci 2001;2(10):734-44. https://doi.org/10.1038/35094583
  39. Bae EA, Kim EJ, Park JS, Kim HS, Ryu JH, Kim DH. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med 2006;72(7):627-33. https://doi.org/10.1055/s-2006-931563
  40. Joo SS, Yoo YM, Ahn BW, Nam SY, Kim YB, Hwang KW, Lee DI. Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol Pharm Bull 2008;31(7):1392-6. https://doi.org/10.1248/bpb.31.1392
  41. Jung JS, Shin JA, Park EM, Lee JE, Kang YS, Min SW, Kim DH, Hyun JW, Shin CY, Kim HS.Anti-inflammatorymechanismof ginsenosideRh1 inlipopolysaccharidestimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 2010;115(6):1668-80. https://doi.org/10.1111/j.1471-4159.2010.07075.x
  42. Liu J, He J, Huang L, Dou L, Wu S, Yuan Q. Neuroprotective effects of ginsenoside Rb1 on hippocampal neuronal injury and neurite outgrowth. Neural Regen Res 2014;9(9):943-50. https://doi.org/10.4103/1673-5374.133137
  43. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58(11):1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  44. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 2012;202:342-51. https://doi.org/10.1016/j.neuroscience.2011.11.070
  45. Zong Y, Ai QL, Zhong LM, Dai JN, Yang P, He Y, Sun J, Ling EA, Lu D. Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase $C-{\gamma}1$ signaling pathway in murine BV-2 microglial cells. Curr Med Chem 2012;19(5):770-9. https://doi.org/10.2174/092986712798992066
  46. Pannacci M, Lucini V, Colleoni F, Martucci C, Grosso S, Sacerdote P, Scaglione F. Panax ginseng C. A. Mayer G115 modulates pro-inflammatory cytokine production in mice throughout the increase of macrophage toll-like receptor 4 expression during physical stress. Brain Behav Immun 2006;20(6):546-51. https://doi.org/10.1016/j.bbi.2005.11.007
  47. Ramesh T, Kim SW, Hwang SY, Sohn SH, Yoo SK, Kim SK. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 2012;32(9):718-26. https://doi.org/10.1016/j.nutres.2012.08.005
  48. Chen SR, Dunigan DD, Dickman MB. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in saccharomyces cerevisiae. Free Radic Biol Med 2003;34(10):1315-25. https://doi.org/10.1016/S0891-5849(03)00146-1
  49. Jia D, Deng Y, Gao J, Liu X, Chu J, Shu Y. Neuroprotective effect of Panax notoginseng plysaccharides against focal cerebral ischemia reperfusion injury in rats. Int J Biol Macromol 2014;63:177-80. https://doi.org/10.1016/j.ijbiomac.2013.10.034
  50. Jacobsen JP, Mork A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Res 2006;1110(1):221-5. https://doi.org/10.1016/j.brainres.2006.06.077
  51. Vargas KG, Milic J, Zaciragic A, Wen K, Jaspers L, Nano J, Dhana K, Bramer WM, Kraja B, Beeck EV, et al. The functions of estrogen receptor beta in the female brain: a systematic review. Maturitas 2016;93:41-57. https://doi.org/10.1016/j.maturitas.2016.05.014
  52. Fogleman M, Fakhrzadeh L, Bernard TE. The relationship between outdoor thermal conditions and acute injury in an aluminum smelter. Int J Ind Ergonom 2005;35(1):47-55. https://doi.org/10.1016/j.ergon.2004.08.003
  53. Japan International Center of Occupational Safety and Health. "Japan construction safety and health association visual statistics of industrial accidents in construction industry. 2001. www.jniosh.go.jp/icpro/jicosh-old/english/statistics/jcsha/index.html.
  54. Balasubramanian V, Prasad GS. Manual bar bending-An occupational hazard for construction workers in developing nations. J Constr Eng M Asce 2007;33(10):791-7. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:10(791)
  55. Chan Albert PC, Yam Michael CH, Chung Joanne WY, Yi Wen. Developing a heat stress model for construction workers. J Facil Manag 2012;10(1):59-74. https://doi.org/10.1108/14725961211200405
  56. Andreollo NA, Santos EF, Araujo MR, Lopes LR. Arq Bras Cir Dig. Rat's age versus human's age: what is the relationship? Arq Bras Cir Dig 2012;25(1):49-51. https://doi.org/10.1590/S0102-67202012000100011
  57. Iandoli Junior D, Nigro AJT, Sementilli A, JulianoY, Novo NF. End-to-end esophagogastric anastomosis comparative study, between a single layer and submucosa-mucosa invagination technics: in rats. Acta Cir Bras 2000;15(1):14-22. https://doi.org/10.1590/s0102-86502000000100003

Cited by

  1. Effects of Ginseng on Neurological Disorders vol.14, 2020, https://doi.org/10.3389/fncel.2020.00055
  2. Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammation in the substantia nigra and colon vol.94, 2020, https://doi.org/10.1016/j.bbi.2021.02.028
  3. Combined Beneficial Effect of Genistein and Atorvastatin on Adipogenesis in 3T3-L1 Adipocytes vol.11, pp.7, 2020, https://doi.org/10.3390/biom11071052