DOI QR코드

DOI QR Code

Closed Static Chamber Methods for Measurement of Methane Fluxes from a Rice Paddy: A Review

벼논 메탄 플럭스 측정용 폐쇄형 정적 챔버법: 고찰

  • Ju, Okjung (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services) ;
  • Kang, Namgoo (Instrumentation Infrastructure Team, Advanced Measurement Instrumentation Institute, Korea Research Institute of Standards and Science) ;
  • Lim, Gapjune (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services)
  • 주옥정 (경기도농업기술원 환경농업연구과) ;
  • 강남구 (한국표준과학연구원 첨단측정장비연구소 장비인프라팀) ;
  • 임갑준 (경기도농업기술원 환경농업연구과)
  • Received : 2020.04.02
  • Accepted : 2020.05.25
  • Published : 2020.06.30

Abstract

Accurate assessment of greenhouse gas emissions is a cornerstone of every climate change response study, and reliable assessment of greenhouse gas emission data is being used as a practical basis for the entire climate change prediction and modeling studies. Essential, fundamental technologies for estimating greenhouse gas emissions include an on-site monitoring technology, an evaluation methodology of uncertainty in emission factors, and a verification technology for reductions. The closed chamber method is being commonly used to measure gas fluxes between soil-vegetation and atmosphere. This method has the advantages of being simple, easily available and economical. This study presented the technical bases of the closed chamber method for measuring methane fluxes from a rice paddy. The methane fluxes from rice paddies occupy the largest portion of a single source of greenhouse gas in the agricultural field. We reviewed the international and the domestic studies on automated chamber monitoring systems that have been developed from manually operated chambers. Based on this review, we discussed scientific concerns on chamber methods with a particular focus on quality control for improving measurement reliability of field data.

온실가스 배출량의 정확한 평가는 모든 기후변화 대응 연구의 초석이며, 신뢰성이 높은 온실가스 배출량의 평가는 모든 기후변화 예측 및 모델링 연구의 실질적인 기초자료로서 활용된다. 온실가스 배출량 산정 기반 기술로서 온실가스 배출량 현장 모니터링 기술, 배출계수의 불확도 평가 기술, 온실가스 배출량 및 저감량 검증 기술 등이 필수적이다. 이런 기반 기술의 핵심에는 토양-식생-대기 간에 교환되는 온실가스 플럭스 산정을 위해 가장 보편적으로 많이 사용되는 폐쇄형 정적 챔버법의 모니터링 기술이 자리 잡고 있다. 본 연구에서는 농업분야 온실가스 단일 배출원으로 가장 큰 부분을 차지하는 벼논에서 발생하는 CH4 플럭스 측정용 폐쇄형 챔버법의 기술적 근간과, 수동형 챔버법에서 전 과정의 자동화 시스템으로 발전을 거듭하고 있는 자동화 챔버 모니터링 기술개발에 대한 국내·외 동향을 소개하였다. 이를 바탕으로 보편적으로 사용하고 있는 챔버법의 표준화된 방법의 고찰과 정확한 현장 자료를 얻기 위한 품질관리 방안이 마련될 수 있을 것이다. 또한 CH4 플럭스 측정방법의 신뢰성 높은 기술 발전 방향에 대해 조망하여 벼논 CH4 배출량 산정 결과들의 신뢰성 향상에 기여하게 될 것으로 전망한다.

Keywords

References

  1. Bae, Y. J., S. J. Bae, I. H. Seo, K. Seo, J. J. Lee, and G. Y. Kim, 2013: Estimation of uncertainty on greenhouse gas emission in the agriculture sector. Korean Society of Rural Planning 19(4), 125-135. (in Korean with English abstract) https://doi.org/10.7851/ksrp.2013.19.4.125
  2. Bronson, K. F., H. U. Neue, E. B. Abao Jr., and U. Singh, 1997: Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, Nitrogen, and Water Management. Soil Science Society of America Journal 61, 981-987. https://doi.org/10.2136/sssaj1997.03615995006100030038x
  3. Cicerone, R. J., and J. D. Shetter, 1981: Sources of atmospheric methane: measurements in rice paddies and a discussion. Journal of Geophysical Research 86, 7203-7209. https://doi.org/10.1029/JC086iC08p07203
  4. Denmead, O. T., 1979: Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Science Society of America Journal 43(1), 89-95. https://doi.org/10.2136/sssaj1979.03615995004300010016x
  5. FAO and IAEA, 1992: Manual on Measurement of methane and nitrous oxide emissions from agriculture. IAEA-TECDOC-674, 91pp.
  6. GIR (Greenhouse gas Inventory and Research center), 2018: National Greenhouse Gas Inventory Report of Korea, 401pp. (in Korean with no English abstract)
  7. GRA (Global Research Alliance on Agricultural Greenhouse Gases), 2015: Nitrous Oxide Chamber Methodology Guidelines.
  8. Hayashi, K., T. Tokida, M. Kajiura, Y. Yanai, and M. Yano, 2015: Cropland soil-plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere. Soil Science and Plant Nutrition 61, 2-33.
  9. IPCC GPG, 2000: Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
  10. Jeong, J. H., S. J. Kang, J. M. Lim, and J. H. Lee, 2016: Comparison and optimization of flux chamber methods of methane emissions from landfill surface area. Journal of Korean Society of Environmental Engineers 38(10), 535-542. (in Korean with English abstract) https://doi.org/10.4491/KSEE.2016.38.10.535
  11. Jeong, H. C., E. J. Choi, J. S. Kim, G. Y. Kim, and S. I. Lee, 2018a: Comparison of CH4 emission between auto chamber and manual chamber in the rice paddy. Journal of Climate Change Research 9(4), 377-384. (in Korean with English abstract) https://doi.org/10.15531/KSCCR.2018.9.4.377
  12. Jeong, H. C., E. J. Choi, G. Y. Kim, S. I. Lee, and J. S. Kim, 2018b: Comparison of CH4 emission by open-path and closed chamber methods in the paddy rice fields. Korean Society of Environmental Biology 36(4), 507-516. (in Korean with English abstract) https://doi.org/10.11626/KJEB.2018.36.4.507
  13. Ju, O. J., J. Kim, J. S. Park, and C. S. Kang, 2018: Chamber method for the estimation of greenhouse gas emissions in agricultural land: A review. Korean Journal of Agricultural and Forest Meteorology 20(1), 34-46. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2018.20.1.34
  14. Ju, O. J., N. G. Kang, J. S. Park, and C. S. Kang, 2017: Automated real-time analysis of greenhouse gases from rice paddies. Proceedings of 9th International Gas Analysis Symposium and Exhibition (http://www.gasanalysisevent.com/en/programme.proceedings/).
  15. Ju, O. J., T. J. Won, K. R. Cho, B. R. Choi, J. S. Seo, I. T. Park, and G. Y. Kim, 2013: New estimates of CH4 emission scaling factors by amount of rice straw applied from Korea paddy fields. Korean Journal of Environmental Agriculture 32(3), 179-184. (in Korean with English abstract) https://doi.org/10.5338/KJEA.2013.32.3.179
  16. Kang, N., M. H. Jung, H. C. Jeong, and Y. S. Lee, 2015: Comparison of pooled standard deviation and standardized t-bootstrap methods for estimating uncertainty about average methane emission from rice cultivation. Atmospheric Environment 111, 39-50. https://doi.org/10.1016/j.atmosenv.2015.03.041
  17. Khalil, M. A. K., R. A. Rasmussen, M.-X. Wang, and L. Ren, 1991: Methane emissions from rice fields in China. Environmental Science and Technology 25, 979-981. https://doi.org/10.1021/es00017a023
  18. Khokhar, N. H., and J. W. Park, 2017: A Simplified sampling procedure for the estimation of methane emission in rice fields. Environmental Monitoring and Assessment 189, 468pp. https://doi.org/10.1007/s10661-017-6184-z
  19. Kim, D. S., Y. K. Jang, and E. C. Jeon, 2000: Surface flux measurements of methane from landfills by closed chamber technique and its validation. Journal of Korean Society for Atmospheric Environment 16(5), 499-509. (in Korean with English abstract)
  20. Kim, G. Y., H. C. Jeong, O. J. Ju, H. K. Kim, J. H. Park, H. S. Gwon and P. J. Kim, 2013: Establishment of baseline emission factor of methane in Korean rice paddy soil. Korean Journal of Environmental Agriculture 32(4), 359-365. (in Korean with English abstract) https://doi.org/10.5338/KJEA.2013.32.4.359
  21. Kim, G. Y., S. I. Park, B. H. Song, and Y. K. Shin, 2002: Emission characteristics of methane and nitrous oxide by management of water and nutrient in a rice paddy soil. Korean Journal of Environmental Agriculture 21(2), 136-143. (in Korean with English abstract) https://doi.org/10.5338/KJEA.2002.21.2.136
  22. Kim, Y., M. S. A. Talucder, M. Kang, K. M. Shim, N. Kang, and J. Kim, 2016: Interannual variations in methane emission from an irrigated rice paddy caused by rainfalls during the aeration period. Agriculture, Ecosystems and Environment 223, 67-75. https://doi.org/10.1016/j.agee.2016.02.032
  23. Ko, J. Y., H. W. Kang, and K. B. Park, 1996: Effects of water management rice straw and compost on methane emission in dry seeded rice. Korean Journal of Soil Science and Fertilizer 29(3), 212-217. (in Korean with English abstract)
  24. Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation, Agriculture Forest Meteorology 91, 39-41. https://doi.org/10.1016/S0168-1923(98)00071-9
  25. Lindau, C. W., P. K. Bollich, R. D. Delaune, W. H. Patrick Jr., and V. J. Law, 1991: Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana, USA rice field. Plant and Soil 136(2), 195-203. https://doi.org/10.1007/BF02150050
  26. Maasakkers, J. D., D. J. Jacob, M. P. Sulprizio, T. R. Scarpelli, H. Nesser, J-X. Sheng, Y. Zhang, M. Hersher, A. A. Bloom, K. W. Bowman, J. R. Worden, G. Janssens-Maenhout, and R. J. Parker, 2019: Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010-2015. Atmospheric Chemistry Physics 19, 7859-7881. https://doi.org/10.5194/acp-19-7859-2019
  27. Matthias, J., R. Bun, Z. Nahorski, G. Marland, M. Gusti, and O. Danylo, 2019: Quantifying greenhouse gas emissions. Mitigation and Adaptation Strategies for Global Change 24, 839-852. https://doi.org/10.1007/s11027-019-09867-4
  28. Minamikawa, K., T. Tokida, S. Sudo, A. Padre, and K. Yagi, 2015: Guidelines for measuring $CH_4$ and $N_2O$ emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
  29. Mosier, A. R., S. L. Chapman, and J. R. Freney, 1989: Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilized with $^{15}N$-urea. Fertilizer Research 19, 127-136. https://doi.org/10.1007/BF01054454
  30. Neue, H. U., and R. L. Sass, 1998: The budget of Methane from rice fields, IGACtivities NewsLetter 12, 3-11.
  31. Pavelka, M., M. Acosta, R. Kiese, N. Altimir, C. Brummer, P. Crill, E. Darenova, R. Fub, B. Gielen, A. Graf, L. Klemedtsson, A. Lohila, B. Longdoz, A. Lindroth, M. Nilsson, S. M. Jimenez, L. Merbold, L. Montagnani, M. Peichl, M. Pihlatie, J. Pumpanen, P. S. Ortiz, H. Silvernnoinen, U. Skiba, P. Vestin, P. Weslien, D. Janous, and W. Kutsch, 2018: Standardisation of chamber technique for $CO_2$, $N_2O$, and $CH_4$ fluxes measurements from terrestrial ecosystems. International Agrophysics 32, 569-587. https://doi.org/10.1515/intag-2017-0045
  32. Raupach, M. R., J. J. Finigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary Layer Meteorology 62, 197-215. https://doi.org/10.1007/BF00705555
  33. RDA (Rural Development Administration), 2005: Development of Agricultural Practices to Mitigate Greenhouse Gases from Agricultural Sector, 382pp. (in Korean)
  34. RDA (Rural Development Administration), 2010: Assessment of Greenhouse Gas Emissions in Agricultural Land in Korea, 146pp. (in Korean)
  35. Rochette, P., and N. S. Eriksen-Hamel, 2008: Chamber measurements of soil Nitrous Oxide Flux: Are absolute values reliable? Soil Physics 72(2), 331-342.
  36. Rolston, D. E., Duxbury, J. M., Harper, L. A., Mosier, A. R., Hutchinson, G. L., and G. P. Livingston, 1993: Use of Chamber Systems to Measure Trace Gas Fluxes. ASA Special Publication. Doi: 10.2134/asaspecpub55.c4.
  37. Sass, R. L., F. M. Fischer, P. A. Harcombe, and F. T. Turner, 1990: Methane production and emission in a Texas agricultural wetland. Global Biogeochemistry Cycles 4, 47-68. https://doi.org/10.1029/GB004i001p00047
  38. Schrier-Uijl, A. P., P. S. Kroon, A. Hensen, P. A. Leffelaar, F. Berendse, and E. M. Veenendall, 2010: Comparison of chamber and eddy covariance-based $CO_2$ and $CH_4$ emission estimates in a heterogeneous grass ecosystems on peat. Agricultural and Forest Meteorology 150, 825-831. https://doi.org/10.1016/j.agrformet.2009.11.007
  39. Schutz, H., and W. Seiler, 1989: Methane flux measurements: Methods and results, exchange of trace gases between terrestrial ecosystems and the atmosphere, eds. Andreae, M.O. and Schimel, D.S., 209-228.
  40. Scott, A., I. Crichton, and B. C. Ball, 1999: Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems. Journal of Environmental Quality 28(5), 1637-1643. https://doi.org/10.2134/jeq1999.00472425002800050030x
  41. Seo, Y. J., J. H. Park, C. Y. Kim, J. S. Kim, D. H. Cho, S. Y. Choi, S. D. Park, H. C. Jung, D. B. Lee, K. S. Kim, and M. Park, 2011: Effects of soil types on methane gas emission in paddy during rice cultivation. Korean Society of Soil Sciences and Fertilizer 44(6), 1220-1225. https://doi.org/10.7745/KJSSF.2011.44.6.1220
  42. Shin, Y. K., Y. S. Lee, S. H. Yun, and M. E. Park, 1995: A simplified closed static chamber method for measuring methane flux in paddy soils. Korean Society of Soil Science and Fertilizer 28(2), 183-190.
  43. Shin, Y. K., Y. S. Lee, M. H. Koh, and K. C. Eom, 2003: Diel Change of methane emission through rice plant under different water management and organic amendment. Korean Journal of Soil Science and Fertilizer 36(1), 32-40.
  44. Uprety, D. C., K. K. Baruah, and L. Borah, 2011: Methane in rice agriculture: A review. Journal of Scientific and Industrial Research 70, 401-411.
  45. Van der Gon, H. A. C. D., and H. U. Neue, 1995: Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles 9(1), 11-22. https://doi.org/10.1029/94GB03197
  46. Wassmann, R., M. C. Alberto, A. Tirol-Padre, N. T. Hoang, R. Romasanta, C. A. Centeno, and B. O. Sander, 2018: Increasing sensitivity of methane emission measurements in rice through deployment of 'closed chambers' at nighttime. PLOS ONE 13(2), e0191352. https://doi.org/10.1371/journal.pone.0191352
  47. Wassmann, R., P. H., and H. Rennenberg, 1993: Methane emission from rice paddies and possible mitigation options. Chemosphere 26, 201-217. https://doi.org/10.1016/0045-6535(93)90422-2
  48. Xunhua, Z., W. Mingxing, W. Uuesi, S. Renxinig, L. Jing, J. H. M. Kogge, L. Laotu, and J. Jisheng, 1998: Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Advances in Atmospheric Sciences 15(4), 569-579. https://doi.org/10.1007/s00376-998-0033-5
  49. Yagi, K., and K. Minami, 1990: Effects of organic matter applications on methane emission from Japanese paddy fields. Soils and the Greenhouse Effect, 467-473.
  50. Yagi, K., J. Tsuruta, K. Kanda, and K. Minami, 1996: Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Global Biogeochemical Cycles 10(2), 255-267. https://doi.org/10.1029/96gb00517
  51. Yao, Z., X. Zheng, B. Xie, C. Liu, B. Mei, H. Dong, K, Butterbach-Bahl, and J. Zhu, 2009: Comparison of manual and automated chambers for field measurements of $N_2O$, $CH_4$, $CO_2$ fluxes from cultivated land. Atmospheric Environment 43, 1888-1896. https://doi.org/10.1016/j.atmosenv.2008.12.031
  52. Yu, K. W., G. X. Chen, and H. Xu, 2006: Rice yield reduction by chamber enclosure: a possible effect on enhancing methane production. Biology and Fertility of Soils 43(2), 257-261. https://doi.org/10.1007/s00374-006-0096-3
  53. Zhang, A., L. Cui, G. Pan, L. Li, Q. Hussain, X. Zhang, J. Zheng, and D. Crowley, 2010: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems and Environment 139, 469-475. https://doi.org/10.1016/j.agee.2010.09.003