DOI QR코드

DOI QR Code

Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation

  • Timesli, Abdelaziz (National Higher School of Arts and Crafts of Casablanca (ENSAM Casablanca), Laboratory of Structural Engineering, Intelligent Systems and Electrical Energy, Hassan II University of Casablanca)
  • Received : 2020.04.26
  • Accepted : 2020.06.06
  • Published : 2020.07.25

Abstract

Concrete is the most widely used substance in construction industry, so it's been required to improve its quality using new technologies. Nowadays, nanotechnology offers new frontiers for improving construction materials. In this paper, we study the stability analysis of the Single Walled Carbon Nanotubes (SWCNT) reinforced concrete cylindrical shell embedded in elastic foundation using the Donnell cylindrical shell theory. In this regard, we propose a new explicit analytical formula of the critical buckling load which takes into account the distribution of SWCNT reinforcement through the thickness of the concrete shell using the U, X, O and V forms and the elastic foundation using Winkler and Pasternak models. The rule of mixture is used to calculate the effective properties of the reinforced concrete cylindrical shell. The influence of diverse parameters on the stability behavior of the reinforced concrete shell is also discussed.

Keywords

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A.J., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24, 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Inuences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24, 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  3. Alibeigloo, A. and Liew, K.M. (2015), "Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method", Int. J. Appl. Mech., 7, 1550002. https://doi.org/10.1142/s1758825115400025.
  4. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71, 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  5. Arani, A.G., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25, 809-820. https://doi.org/10.1007/s12206-011-0127-3.
  6. Arani, A.G., Pourjamshidian, M., Arefi, M. and Arani, M.R. (2019), "Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak'is foundationbased on higher order shear deformation theory", Struct. Eng. Mech., 69, 439-455. https://doi.org/10.12989/sem.2019.69.4.439.
  7. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17, 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
  8. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25, 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30, 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24, 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  11. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Brazil. Soc. Mech. Sci. Eng., 42, 33. https://doi.org/10.1007/s40430-019-2118-8.
  12. Barati, M.R. and Zenkour, A.M. (2018), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2018.1444235.
  13. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal exural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25, 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
  14. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33, 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  15. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A.J., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34, 643-655. https://doi.org/10.12989/scs.2020.34.5.643
  16. Bensaid, I. and Kerboua, B. (2019), "Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations", Adv. Aircraft Spacecraft Sci., 6, 207-223. https://doi.org/10.12989/aas.2019.6.3.207.
  17. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1, 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  18. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31, 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  19. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18, 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  20. Bousahla, A.A., Bourada, F, Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25, 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  21. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25, 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  22. Brush, D. and Almroth, B. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York.
  23. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z, Tounsi, A.J., Derras, A., Bousahla A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71, 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  24. Chen, B., Kondoh, K., Umeda, J., Li, S., Jia, L. and Li, J. (2019), "Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites", J. Alloy. Compound., 789, 25-29. https://doi.org/10.1016/j.jallcom.2019.03.063.
  25. Daghigh, H. and Daghigh, V. (2018), "Free vibration of size and temperature-dependent carbon nanotube (CNT)-reinforced composite nanoplates with CNT agglomeration", Polym. Compos., 40(S2), E1479-E1494. https://doi.org/10.1002/pc.25057.
  26. Donnell, L.H. (1933), Stability of Thin-Walled Tubes under Torsion, US Government Printing Office.
  27. Draiche, K., Bousahla, A.A, Tounsi, A., Alwabli, A.S., Tounsi, A.J. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24, 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  28. Draiche, K., Bousahla, A.A, Tounsi, A., Alwabli, A.S., Tounsi, A.J. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24, 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  29. Draoui, A., Zidour, A., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  30. Eringen, A.C. and Edelen, D.G.B. (2005), "Design procedures for installation of suction caissons in clay and other materials", Proc. Inst. Civil Eng.- Geotech. Eng., 158, 75-82. https://doi.org/10.1680/geng.2005.158.2.75
  31. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  32. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  33. Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates", Compos. Part B: Eng., 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021.
  34. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircraft Spacecraft Sci., 6, 297-314. https://doi.org/10.12989/aas.2019.6.4.297.
  35. Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020.
  36. Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048.
  37. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39, 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  38. He, X.Q., Kitipornchai, S. and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der waals interaction", J. Mech. Phys. Solid., 53, 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.
  39. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8, 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  40. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7, 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  41. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25, 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  42. Kamarian, S., Shakeri, M., Yas, M., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 17, 632-665. https://doi.org/10.1177/1099636215590280.
  43. Karami, B., Janghorban, M. and Tounsi, A. (2019), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  44. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70, 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  45. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
  46. Kerr, A.D. (1965), "A study of a new foundation model", Acta Mechanica, 1, 135-147. https://doi.org/10.1007/BF01174308.
  47. Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001.
  48. Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2018), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2018.10.106.
  49. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38, 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008.
  50. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21. https://doi.org/10.1177/1099636217727577.
  51. Majeed, W.I. and Sadiq, I.A. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Ser.: Mater. Sci. Eng., 454, 012006. https://doi.org/10.1088/1757-899X/454/1/012006.
  52. Malikan, M. (2020), "On the plastic buckling of curved carbon nanotubes", Theor. Appl. Mech. Lett., 10, 46-56. https://doi.org/10.1016/j.taml.2020.01.004.
  53. Medani, M., Benahmed, A., Zidour, A., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32, 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  54. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192.
  55. Mirjavadi, S.S., Forsat, M., Hamouda, A. and Barati, M.R. (2019), "Dynamic response of functionally graded graphene nanoplatelet reinforced shells with porosity distributions under transverse dynamic loads", Mater. Res. Express, 6, 075045. https://doi.org/10.1088/2053-1591/ab1552.
  56. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
  57. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59, 431-454. https://doi.org/10.12989/sem.2016.59.3.431.
  58. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007.
  59. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow.
  60. Qin, Z., Pang, X., Safaei, B. and Chu, F. (2019), "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.
  61. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams", Comput. Math. Appl., 66, 1147-1160. https://doi.org/10.1016/j.camwa.2013.04.031.
  62. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A.J., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Inuence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25, 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  63. Rahmani, R. and Antonov, M. (2019), "Axial and torsional buckling analysis of single- and multi-walled carbon nanotubes: finite element comparison between armchair and zigzag types", SN Appl. Sci., 1, 1134. https://doi.org/10.1007/s42452-019-1190-0.
  64. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A.J., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25, 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  65. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A, Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33, 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  66. Sayyad, A.S. and Ghugal, Y.M. (2018), "An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation", Adv. Aircraft Spacecraft Sci., 5, 671-689. https://doi.org/10.12989/aas.2018.5.6.671.
  67. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7, 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  68. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7, 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  69. Setoodeh, A.R. and Shojaee, M. (2017), "Critical buckling load optimization of functionally graded carbon nanotube-reinforced laminated composite quadrilateral plates", Polym. Compos., 39, 853-868. https://doi.org/10.1002/pc.24289.
  70. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput. https://doi.org/10.1007/s00366-020-01024-9.
  71. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25, 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  72. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.
  73. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
  74. Timesli, A., Braikat, B., Jamal, M. and Damil, N. (2017), "Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression", Comptes Rendus Mecanique, 345, 158-168. https://doi.org/10.1016/j.crme.2016.12.002.
  75. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.
  76. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34, 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  77. Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005.
  78. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028.
  79. Winkler, E. (1867), Die Lehre von Elastizitat und Festigkeit (on Elasticity and Fixity), Dominicus, Prague.
  80. Wu, C.P. and Li, H.Y. (2014), "Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions", J. Vib. Control, 2, 89-107. https://doi.org/10.1177/1077546314528367.
  81. Wu, H., Kitipornchai, S. and Yang, J. (2016), "Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections", Smart Mater. Struct., 25, 095022. https://doi.org/10.1088/0964-1726/25/9/095022.
  82. Xiang, H.J. and Shi, Z.F. (2011), "Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation", Struct. Eng. Mech., 40, 373-392. https://doi.org/10.12989/sem.2011.40.3.373.
  83. Xie, B., Li, Q., Zeng, K, Sahmani, S. and Madyira, D.M. (2020), "Instability analysis of silicon cylindrical nanoshells under axial compressive load using molecular dynamics simulations", Microsyst. Technol., 1-12. https://doi.org/10.1007/s00542-020-04851-4.
  84. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  85. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24, 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  86. Zaouia, F.Z., Ouinasa, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1177/1099636217727577.
  87. Zarei, H., Fallah, M., Bisadi, H., Daneshmehr, A. and Minak, G. (2017), "Multiple impact response of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates with general boundary conditions", Compos. Part B: Eng., 113, 206-217. https://doi.org/10.1016/j.compositesb.2017.01.021.
  88. Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B: Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037.
  89. Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy'is higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102.

Cited by

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
  3. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
  4. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  5. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  6. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  7. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7