DOI QR코드

DOI QR Code

Carbon Reduction and Enhancement for Greenspace in Institutional Lands

공공용지 녹지의 탄소저감과 증진방안

  • Jo, Hyun-Kil (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Park, Hye-Mi (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Kim, Jin-Young (Dept. of Ecological Landscape Architecture Design, Kangwon National University)
  • 조현길 (강원대학교 생태조경디자인학과) ;
  • 박혜미 (강원대학교 생태조경디자인학과) ;
  • 김진영 (강원대학교 생태조경디자인학과)
  • Received : 2020.07.06
  • Accepted : 2020.07.21
  • Published : 2020.08.31

Abstract

This study quantified annual uptake and storage of carbon by urban greenspace in institutional lands and suggested improvement of greenspace structures to enhance carbon reduction effects. The study selected a total of five study cities including Seoul, Daejeon, Daegu, Chuncheon, and Suncheon, based on areal size and nationwide distribution. Horizontal and vertical greenspace structures were field-surveyed, after institutional greenspace lots were selected using a systematic random sampling method on aerial photographs of the study cities. Annual uptake and storage of carbon by woody plants were computed applying quantitative models of each species developed for urban landscape trees and shrubs. Tree density and stem diameter (at breast height) in institutional lands averaged 1.4±0.1 trees/100 ㎡ and 14.9±0.2 cm across the study cities, respectively. Of the total planted area, the ratio of single-layered planting only with trees, shrubs, or grass was higher than that of multi-layered structures. Annual uptake and storage of carbon per unit area by woody plants averaged 0.65±0.04 t/ha/yr and 7.37±0.47 t/ha, which were lower than those for other greenspace types at home and abroad. This lower carbon reduction was attributed to lower density and smaller size of trees planted in institutional lands studied. Nevertheless, the greenspace in institutional lands annually offset carbon emissions from institutional electricity use by 0.6 (Seoul)~1.9% (Chuncheon). Tree planting in potential planting spaces was estimated to sequester additionally about 18% of the existing annual carbon uptake. Enhancing carbon reduction effects requires active tree planting in the potential spaces, multi-layered/clustered planting composed of the upper trees, middle trees and lower shrubs, planting of tree species with greater carbon uptake capacity, and avoidance of the topiary tree maintenance. This study was focused on finding out greenspace structures and carbon offset levels in institutional lands on which little had been known.

본 연구는 도시의 공공용지 녹지에 의한 탄소의 연간 흡수 및 저장을 계량화하고, 탄소저감 효과를 증진하기 위한 녹지구조의 개선방안을 제시하였다. 연구대상 도시는 규모와 분포지방을 고려하여 서울시, 대전시, 대구시, 춘천시, 순천시 등 총 5개 도시를 표본 선정하였다. 대상 도시의 항공사진 상에서 체계적 임의 표본추출방법을 통해 표본 공공용지를 선정하고, 녹지의 수평적 및 수직적 구조를 실사하였다. 도시 조경수목을 대상으로 개발한 수종별 계량모델을 적용하여, 식재수목에 의한 탄소의 연간 흡수 및 저장량을 산정하였다. 연구대상 공공용지의 교목밀도는 도시들 모두에 걸쳐 평균 1.4±0.1주/100㎡이고, 흉고직경은 14.9±0.2cm이었다. 녹지의 수직구조는 교목, 관목 또는 잔디만 식재한 단층구조의 비율이 다층구조보다 더 높았다. 식재수목에 의한 단위면적당 연간 탄소흡수량은 평균 0.65±0.04t/ha/yr이고, 단위면적당 탄소저장량은 7.37±0.47t/ha로서, 국내·외의 타 녹지공간 유형에 비해 낮은 탄소저감 효과를 보였다. 이는 연구대상 공공용지의 식재수목 밀도와 규격이 상대적으로 저조하기 때문이었다. 그럼에도 불구하고, 공공용지의 녹지는 공공용 전력소비에 따른 탄소배출을 도시에 따라 해마다 0.6(서울)~1.9%(춘천) 상쇄시키는 셈이었다. 잠재식재공간 내 수목식재는 기존 연간 탄소흡수량을 약 18% 추가 증진 가능하였다. 공공용지 녹지의 탄소저감 효과를 증진하기 위해서는 잠재식재공간의 적극적 수목식재, 상층 교목, 중층 교목 및 하층 관목으로 구성되는 다층 군식의 추진, 탄소흡수 능력이 양호한 교목종의 상층 식재, 상록수종의 토피어리, 관리회피 등이 요구된다. 본 연구는 국내 미진한 공공용지의 녹지구조 및 탄소상쇄를 구명하는데 중점을 두었다.

Keywords

References

  1. Gratani, L., L. Varone and A. Bonito(2016) Carbon sequestration of four urban parks in Rome. Urban Forestry & Urban Greening 19: 184-193. https://doi.org/10.1016/j.ufug.2016.07.007
  2. Jo, H. K. and D. H. Cho(1998) Annual $CO_2$ uptake by urban popular landscape tree species. Journal of the Korean Institute of Landscape Architecture 26(2): 38-53.
  3. Jo, H. K. and E. G. McPherson(1995) Carbon storage and flux in urban residential greenspace. Journal of Environmental Management 45: 109-133. https://doi.org/10.1006/jema.1995.0062
  4. Jo, H. K. and H. M. Park(2017) Changes in growth rate and carbon sequestration by age of landscape trees. Journal of the Korean Institute of Landscape Architecture 45(5): 97-104. https://doi.org/10.9715/KILA.2017.45.5.097
  5. Jo, H. K. and T. W. Ahn(2001) Annual $CO_2$ uptake and atmospheric purification by urban coniferous trees - For Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 15(2): 118-124.
  6. Jo, H. K. and T. W. Ahn(2012) Carbon storage and uptake by deciduous tree species for urban landscape. Journal of the Korean Institute of Landscape Architecture 40(5): 160-168. https://doi.org/10.9715/KILA.2012.40.5.160
  7. Jo, H. K. (2001) Indicator for $CO_2$ Uptake and Atmospheric Purification Evaluation of Vegetation. Development of Eco-Indicators for Sustainable Development. Research Report to Ministry of Environment.
  8. Jo, H. K. (2002) Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management 64: 115-126. https://doi.org/10.1006/jema.2001.0491
  9. Jo, H. K. (2019) Development of Model and Technology for Establishment, Management and Evaluation of Urban Forests in Living Zone to Improve Carbon Sequestration Sources and Multi-dimensional Benefits against New Climate Change Regime. Research Report to Korea Forest Service.
  10. Jo, H. K., H. M. Park and J. Y. Kim(2019a) Carbon offset service and design guideline of tree planting for multifamily residential sites in Korea. Sustainability 11(13): 3543. https://doi.org/10.3390/su11133543
  11. Jo, H. K., J. Y. Kim and H. M. Park(2013) Carbon storage and uptake by evergreen trees for urban landscape - For Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 27(5): 571-578. https://doi.org/10.13047/KJEE.2013.27.5.571
  12. Jo, H. K., J. Y. Kim and H. M. Park(2014) Carbon reduction effects of urban landscape trees and development of quantitative models -For five native species. Journal of the Korean Institute of Landscape Architecture 42(5): 13-21. https://doi.org/10.9715/KILA.2014.42.5.013
  13. Jo, H. K., J. Y. Kim and H. M. Park(2018) Carbon storage and uptake by street trees in Seoul. Journal of Forest and Environmental Science 34(2): 162-164. https://doi.org/10.7747/JFES.2018.34.2.162
  14. Jo, H. K., J. Y. Kim and H. M. Park(2019b) Carbon reduction and planning strategies for urban parks in Seoul. Urban Forestry & Urban Greening 41: 48-54. https://doi.org/10.1016/j.ufug.2019.03.009
  15. Jo, H. K., J. Y. Kim and H. M. Park(2019c) Carbon reduction services of evergreen broadleaved landscape trees for Ilex rotunda and Machilus thunbergii in Southern Korea. Journal of Forest and Environmental Science 35(4): 240-247. https://doi.org/10.7747/JFES.2019.35.4.240
  16. Jo, H. K., S. H. Kil, H. M. Park and J. Y. Kim(2019d) Carbon reduction by and quantitative models for landscape tree species in southern region - For Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia. Journal of the Korean Institute of Landscape Architecture 47(3): 31-38. https://doi.org/10.9715/KILA.2019.47.3.031
  17. KEP(Korea Environment Corporation)(2016) Guidelines for Local Government Greenhouse Gas Inventories. Incheon.
  18. KEPC(Korea Electric Power Corporation)(2019) Statistics of Electric Power in Korea. Naju.
  19. KSPI(Korea Statistics Promotion Institute)(2019) Korea Statistical Yearbook. Daejeon.
  20. Liu, C. and X. Li(2012) Carbon storage and sequestration by urban forests in Shenyang, China. Urban Forestry & Urban Greening 11: 121-128. https://doi.org/10.1016/j.ufug.2011.03.002
  21. McGovern, M. and J. Pasher(2016) Canadian urban tree canopy cover and carbon sequestration status and change 1990-2012. Urban Forestry & Urban Greening 20: 227-232. https://doi.org/10.1016/j.ufug.2016.09.002
  22. McPherson, E. G. (1998) Atmospheric carbon dioxide reduction by Sacramento's urban forest. Journal of Arboriculture 24(4): 215-223.
  23. Nowak, D. J. and D. E. Crane(2002) Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116: 381-389. https://doi.org/10.1016/S0269-7491(01)00214-7
  24. Nowak, D. J., E. J. Greenfield, R. E. Hoehn and E. Lapoint(2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution 178: 229-236. https://doi.org/10.1016/j.envpol.2013.03.019
  25. Rumble, H., K. Rogers, K. J. Doick and T. Hutchings(2015) A comparison of urban tree populations in four UK town and cities. Proceedings of Trees, People and the Built Environment II. Edinburgh: Institute of Chartered Foresters. pp. 181-195.
  26. http://m.me.go.kr/home/web/policy_data