DOI QR코드

DOI QR Code

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5)

기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가

  • Lee, So-Jeong (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hyun, Yu-Kyung (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Sang-Min (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hwang, Seung-On (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Boo, Kyung-On (Operational Systems Development Department, National Institute of Meteorological Sciences)
  • 이소정 (국립기상과학원 현업운영개발부) ;
  • 현유경 (국립기상과학원 현업운영개발부) ;
  • 이상민 (국립기상과학원 현업운영개발부) ;
  • 황승언 (국립기상과학원 현업운영개발부) ;
  • 이조한 (국립기상과학원 현업운영개발부) ;
  • 부경온 (국립기상과학원 현업운영개발부)
  • Received : 2020.07.29
  • Accepted : 2020.09.21
  • Published : 2020.09.30

Abstract

There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Keywords

References

  1. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147-1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  2. Ailikun, B., and T. Yasunari, 1998: On the two indices of Asian summer monsoon variability and their implications. Extended Abstracts, Int. Conf. on Monsoon and Hydrologic Cycle, Kyongju, Korea, Korean Meteorological Society, 222-224.
  3. Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J . D . Scott, 2002: The A tmospheric Bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205-2231. https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
  4. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - part 1: energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  5. Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865-1877, doi:10.1175/BAMS-D-12-00018.1.
  6. Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. J. Climate, 23, 3657-3675, doi:10.1175/2010JCLI3022.1.
  7. Choi, J.-W., B.-J. Kim, R. Zhang, K.-J. Park, J.-Y. Kim, Y. Cha, and J.-C. Nam, 2016a: Possible relation of the western North Pacific monsoon to the tropical cyclone activity over western North Pacific. Int. J. Climatol., 36, 3334-3345, doi:10.1002/joc.4558.
  8. Choi, K.-S., B.-J. Kim, R. Zhang, J.-C. Nam, K.-J. Park, J.-Y. Kim, and D.-W. Kim, 2016b: Possible influence of South Asian high on summer rainfall variability in Korea. Climate Dyn, 46, 833-846, doi:10.1007/s00382-015-2615-0.
  9. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.
  10. Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117-142. https://doi.org/10.1007/s00703-005-0125-z
  11. Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Q. J. R. Meteorol. Soc., 129, 157-178. https://doi.org/10.1256/qj.01.211
  12. Feng, J., T. Wei, W. Dong, Q. Wu, and Y. Wang, 2014: CMIP5/AMIP GCM simulations of East Asian summer monsoon. Adv. Atmos. Sci., 31, 836-850, doi:10.1007/s00376-013-3131-y.
  13. Goswami, B. N., V. Krishnamurthy, and H. Annmalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q. J. R. Meteorol. Soc., 125, 611-633. https://doi.org/10.1002/qj.49712555412
  14. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc., 106, 447-462. https://doi.org/10.1002/qj.49710644905
  15. Guo, Q.-Y., 1983: The summer monsoon intensity index in East Asia and its variation. Acta Geogr. Sin., 38, 208-217 (in Chinese).
  16. Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: a review and revisit. Climate Dyn., 51, 4207-4227, doi:10.1007/s00382-017-3773-z.
  17. Huang, R., and F. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan. Ser. II, 70, 243-256. https://doi.org/10.2151/jmsj1965.70.1B_243
  18. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos sea ice model documentation and software user's manual version 4.1. Tech. Rep. Los Alamos National Laboratory, LA-CC-06-012, N.M., 116 pp.
  19. Jeong, J.-H., and Coauthors, 2017: The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pac. J. Atmos. Sci., 53, 149-173, doi:10.1007/s13143-017-0008-5.
  20. Jo, H.-S., S.-W. Yeh, and S.-K. Lee, 2015: Changes in the relationship in the SST variability between the tropical Pacific and the North Pacific across the 1998/1999 regime shift. Geophys. Res. Lett., 42, 7171-7178, doi:10.1002/2015GL065049.
  21. Kim, D.-K., Y.-H. Kim, and C. Yoo, 2019: Predictability of Northern Hemisphere Teleconnection Patterns in GloSea5 Hindcast Experiments up to 6 Weeks. Atmosphere, 29, 295-309, doi:10.14191/ATMOS.2019.29.3.295 (in Korean with English abstract).
  22. Kim, H.-M., P. J. Webster, J. A. Curry, and V. E. Toma, 2012: Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 2975-2991, doi:10.1007/s00382-012-1470-5.
  23. Kim, Y. S., C. J. Jang, and S.-W. Yeh, 2018: Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift. Cont. Shelf Res., 156, 43-54, doi:10.1016/j.csr.2018.01.009.
  24. Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574-7589, doi:10.1175/JCLID-12-00009.1.
  25. Kwon, M., J.-G. Jhun, B. Wang, S.-I. An, and J.-S. Kug, 2005: Decadal change in relationship between East Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709. https://doi.org/10.1029/2005GL023026
  26. Lau, K.-M., and M.-T. Li, 1984: The monsoon of East Asia and its global associations-A survey. Bull. Amer. Meteor. Soc., 65, 114-125. https://doi.org/10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2
  27. Lee, E.-J., J.-G. Jhun, and C.-K. Park, 2005: Remote connection of the Northeast Asian summer rainfall variation revealed by a newly defined monsoon index. J. Climate, 18, 4381-4393. https://doi.org/10.1175/JCLI3545.1
  28. Lee, J. H., P. Y. Julien, C. Thornton, and C. H. Lee, 2020: Large-scale climate teleconnections with South Korean streamflow variability. Hydrolog. Sci. J., 65, 57-70, doi:10.1080/02626667.2019.1617869.
  29. Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-H. Byun, and C. Cho, 2016: Verification and comparison of forecast skill between Global Seasonal Forecasting System Version 5 and Unified Model during 2014. Atmosphere, 26, 59-72, doi:10.14191/ATMOS.2016.26.1.059 (in Korean with English abstract).
  30. Li, Y., J. Li, and J. Feng, 2013: Boreal summer convection oscillation over the Indo-western Pacific and its relationship with the East Asian summer monsoon. Atmos. Sci. Lett., 14, 66-71, doi:10.1002/asl2.418.
  31. Li, Z., M. Wei, J. Zhou, and X. Tian, 2020: Arid-humid variations in the summer climate and their influence mechanism in Asian monsoon margin of Northwest China during 1960-2010: A case study in the Alashan Plateau. Int. J. Climatol., doi:10.1002/joc.6599.
  32. Lim, S.-M., Y.-K., Hyun, H.-S., Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract).
  33. Liu, Y. Y., W. J. Li, W. X. Ai, and Q. Q. Li, 2012: Reconstruction and application of the monthly western Pacific subtropical high indices. J. Appl. Meteor. Sci., 23, 414-423 (in Chinese). https://doi.org/10.3969/j.issn.1001-7313.2012.04.004
  34. Lu, R.-Y., C.-F. Li, S.-H. Yang, and B. Dong, 2012: The coupled model predictability of the western North Pacific summer monsoon with different leading times. Atmos. Oceanic Sci. Lett., 5, 219-224, doi:10.1080/16742834.2012.11447000.
  35. Madec, G., 2008: NEMO ocean engine. Note du Pole de Modelisation 27, Institut Pierre-Simon Laplace, 300 pp.
  36. Min, S.-K., and Coauthors, 2015: Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pac. J. Atmos. Sci., 51, 103-121, doi:10.1007/s13143-015-0066-5.
  37. National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, 192 pp.
  38. NIER, 2010: A report of Korea climate change valuation. National Institute of Environmental Research, 216 pp (in Korean).
  39. NIMS, 2018: A research on the improvement of marine forecast technology using observation data. National Institute of Meteorological Sciences, 47 pp (in Korean).
  40. Ning, L., J. Liu, and B. Wang, 2017: How does the South Asian High influence extreme precipitation over eastern China?. J. Geophys. Res. Atmos., 122, 4281-4298, doi:10.1002/2016JD026075.
  41. Nitta, T., 1987: Convective activities in the tropical Western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan. Ser. II, 65, 373-390, doi:10.2151/jmsj1965.65.3_373.
  42. Nitta, T., and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan. Ser. II, 74, 425-445, doi:10.2151/jmsj1965.74.4_425.
  43. Noh, T.-G., S.-W. Yeh, Y.-K. Hyun, and S.-O. Hwang, 2020: Non-stationary characteristics of intraseasonal precipitation variability in Northeast Asia during the boreal summer. Int. J. Climatol., doi: 10.1002/joc.6647.
  44. Tian, S.-F., and T. Yasunari, 1992: Time and space structure of interannual variations in summer rainfall over China. J. Meteor. Soc. Japan. Ser. II, 70, 585-596, doi:10.2151/jmsj1965.70.1B_585.
  45. Walters, D. N., and Coauthors, 2011: The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919-941, doi:10.5194/gmd-4-919-2011.
  46. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629-638. https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
  47. Wang, B., R. Wu, and K.-M. Lau, 2001a: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-east Asian monsoons. J. Climate, 14, 4073-4090. https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
  48. Wang, B., I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803-818. https://doi.org/10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2
  49. Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449-4463. https://doi.org/10.1175/2008JCLI2183.1
  50. Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. U.S.A., 110, 2718-2722, doi:10.1073/pnas.1214626110.
  51. Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El-Nino Southern Oscillation. J. Geophys. Res. Oceans, 104, 5131-5149. https://doi.org/10.1029/1998JC900090
  52. Wang, Y., B. Wang, and J.-H. Oh, 2001b: Impact of the preceding El Nino on the East Asian summer atmosphere circulation. J. Meteor. Soc. Japan. Ser. II, 79, 575-588. https://doi.org/10.2151/jmsj.79.575
  53. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc., 118, 877-926. https://doi.org/10.1002/qj.49711850705
  54. Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans, 103, 14451-14510. https://doi.org/10.1029/97JC02719
  55. Wei, W., R. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 2623-2634, doi:10.1175/JCLI-D-14-00454.1.
  56. Xue, X., W. Chen, D. Nath, and D. Zhou, 2015: Whether the decadal shift of South Asia High intensity around the late 1970s exists or not. Theor. Appl. Climatol., 120, 673-683, doi:10.1007/s00704-014-1200-5.
  57. Yang, R., Z. Xie, and J. Cao, 2017: A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer. J. Climate, 30, 3325-3341, doi:10.1175/JCLI-D-16-0434.1.
  58. Yeo, S.-R., K.-Y. Kim, S.-W. Yeh, and W. Kim, 2012: Decadal changes in the relationship between the tropical Pacific and the North Pacific. J. Geophys. Res. Atmos., 117, D15102, doi:10.1029/2012JD017775.
  59. Yim, S.-Y., S.-W. Yeh, R. Wu, and J.-G. Jhun, 2008: The influence of ENSO on decadal variations in the relationship between the East Asian and western North Pacific summer monsoons. J. Climate, 21, 3165-3179. https://doi.org/10.1175/2007JCLI1948.1
  60. Yin, Y., H. Chen, P. Zhai, C.-Y. Xu, and H. Ma, 2019: Characteristics of summer extreme precipitation in the Huai River basin and their relationship with East Asia summer monsoon during 1960-2014. Int. J. Climatol., 39, 1555-1570, doi:10.1002/joc.5900.
  61. Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The interannual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteor. Sin., 61, 559-568 (in Chinese). https://doi.org/10.3321/j.issn:0577-6619.2003.05.005
  62. Zhao, G., G. Huang, R. Wu, W. Tao, H. Gong, X. Qu, and K. Hu, 2015: A new upper-level circulation index for the East Asian summer monsoon variability. J. Climate, 28, 9977-9996, doi:10.1175/JCLI-D-15-0272.1.
  63. Zhou, F., H.-L. Ren, Z.-Z. Hu, M.-H. Liu, J. Wu, and C.-Z. Liu, 2020: Seasonal predictability of primary East Asian summer circulation patterns by three operational climate prediction models. Q. J. R. Meteorol. Soc., 146, 629-646, doi:10.1002/qj.3697.
  64. Zhou, T., and L. Zou, 2010: Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIPtype simulation. J. Climate, 23, 6009-6026, doi:10.1175/2010JCLI3546.1.
  65. Zhu, C., W.-S. Lee, H. Kang, and C.-K. Park, 2005: A proper monsoon index for seasonal and interannual variations of the East Asian monsoon. Geophys. Res. Lett., 32, L02811. https://doi.org/10.1029/2004GL021295