DOI QR코드

DOI QR Code

Clean Flotation Process to Recycle useful Materials from Fly Ash

비산재로부터 유용성분을 회수하는 청정부유선별공정

  • Han, Gwang Su (Environment Protection, Gyeongsang National University) ;
  • Kim, Dul-Sun (Department of Chemical Engineering Gyeongsang National University) ;
  • Lee, Dong-Keun (Department of Chemical Engineering Gyeongsang National University)
  • 한광수 (경상대학교 환경보전학과) ;
  • 김둘선 (경상대학교 화학공학과) ;
  • 이동근 (경상대학교 화학공학과)
  • Received : 2020.07.08
  • Accepted : 2020.08.19
  • Published : 2020.09.30

Abstract

All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 ㎛, so it was possible to realize the atomization of CM through a process change.

본 연구에서는 석탄화력발전소에서 전량 폐기되고 있는 석탄재의 재활용 방안으로 석탄회의 80%를 차지하고 있는 비산재로 부터 유용성분을 회수하고 이를 산업재로 활용하기 위한 청정부유선별 공정을 개발하였다. 비산재로부터 미연탄소(unburned carbon, UC) 를 회수하기 위해 비이온성 포수제인 등유 대신에 친환경 식물성 오일인 대두유를 사용하여 등유로부터 악취 발생을 예방하였고 부유선별 후 잔류물로부터 CM (ceramic microsphere)과 CA (cleaned ash)를 분리하기 위해 황산용액을 사용하지 않고 hydro-cyclone를 사용함으로써 산성폐수를 발생시키지 않고 미립의 CM를 회수할 수 있었다. 등유를 포수제로 사용하여 UC를 분리할 때 보다 대두유를 포수제로 사용하였을 때, 대두유의 높은 점성으로 인한 UC의 흡착성 증가와 대두유에 포함된 리놀레산에 의해 부유성 향상으로 UC의 회수율이 85.8%로 높게 나타났다. 회수된 UC에 포함된 연소가능성분(combustible component, CC)은 모두 탄소성분으로 대두유를 사용하였을 때 탄소의 함량이 높게 나타났으며, 회수된 UC는 표면이 거칠면서 기공이 많아 분쇄가 쉬워 미립화로 산업용 소재로 활용할 수 있을 것이다. Hydro-cyclone을 이용한 입도선별 청정분리공정에 의해 회수된 CM과 CA는 구형 형상으로 입자들이 서로 뭉치지 않고 뚜렷하게 분리되었으며 입자의 평균직경(D50)은 5 ㎛로 미세하여 공정변경에 의한 CM의 미립화를 구현할 수 있었다.

Keywords

References

  1. Ahmaruzzaman, M., "A Review on the Utilization of Fly Ash," Prog. Energy Combust. Sci., 36, 327-363 (2010). https://doi.org/10.1016/j.pecs.2009.11.003
  2. Zyrkowski, M., Neto, R. C., Santos, L. F., and Witkowski, K., "Characterization of Fly Ash Cenospheres from Coal-fired Power Plant Unit," Fuel, 174, 49-53 (2016). https://doi.org/10.1016/j.fuel.2016.01.061
  3. Maeng, J. H., Kim, T. Y., and Suh, D. H., "Minimizing Environmental Impact in Accordance with the Thermal Power Plant Ash Management (I)," Korea Environ. Inst. (2014).
  4. Suh, D.-H., and Maeng, J.-H., "A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds," J. Environ. Impact Assess., 24(5), 472-486 (2015). https://doi.org/10.14249/eia.2015.24.5.472
  5. Na, C.-K., and Kim, S.-B., "Reusability of Unburned Carbon Separated from Coal Fly Ash as an Activated Carbon," J. Korea Soc. Waste Manage., 21(4), 328-335 (2004).
  6. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., and Xi, Y. Q., "A Comprehensive Review on the Applications of Coal Fly Ash," Earth-Sci. Rev., 141, 105-121 (2015). https://doi.org/10.1016/j.earscirev.2014.11.016
  7. Cho, H., Maeng, J.-H., and Kim, E.-Y., "Studies on Expanding Application for the Recycling of Coal Ash in Domestic," J. Environ. Impact Assess., 26(6), 563-573 (2017). https://doi.org/10.14249/EIA.2017.26.6.563
  8. Seho, S. L., Lee, Y.-S., An, E.-M., and Cho, S.-B., "Application of Unburned Carbon Produced from Seochun Power Plant," J. Korean Inst. Resour. Recycl., 23(1), 40-47 (2014). https://doi.org/10.7844/kirr.2014.23.1.40
  9. Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., and Park, H. C., "Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash," J. Korean Ceram. Soc., 47(2), 151-156 (2010). https://doi.org/10.4191/KCERS.2010.47.2.151
  10. Lee, E.-S., Back, S.-K., Cho, S.-J., Kim, K.-H., and Seo, Y.-C., "Estimation of Stability of Mercury Compounds in Fly Ash from Waste Incinerator by Deriving the Correlation between Mercury Content and Concentration in Leachate," J. Korea Soc. Waste Manag., 36(7), 624-631 (2019). https://doi.org/10.9786/kswm.2019.36.7.624
  11. Choi, J.-H., and Oh, S. C., "Removal of Chlorine from Municipal Solid Waste Fly Ash by using Acid and Alkaline Solution," J. Korea Soc. Waste Manag., 36(5), 471-479 (2019). https://doi.org/10.9786/kswm.2019.36.5.471
  12. Song, O.-Y., and Jung, J.-O., "Recovery of Carbonic Matter from Municipal Solid Waste Fly Ash using Oil Agglomeration," J. Korea Soc. Waste Manag., 36(2), 146-153 (2019). https://doi.org/10.9786/kswm.2019.36.2.146
  13. Vassilev, S. V., and Vassileva, C. G., "Mineralogy of Combustion Wastes from Coal-fired Power Stations," Fuel Process. Technol., 47, 261-280 (1996). https://doi.org/10.1016/0378-3820(96)01016-8
  14. Hower, J. C., Senior, C. L., Suuberg, E. M., Hurt, R. H., Wilcox, J. L., and Olson, E. S., "Mercury Capture by Native Fly Ash Carbons in Coal-fired Power Plants," Prog. Energy Combust. Sci., 36, 510-529 (2010). https://doi.org/10.1016/j.pecs.2009.12.003
  15. Han, G., Yang, S., Peng, W., Huang, Y., Wu, H., Chai, W., and Liu, J., "Enhanced Recycling and Utilization of Mullite from Coal Fly Ash with a Flotation and Metallurgy Process," J. Cleaner Prod., 178, 804-813 (2018). https://doi.org/10.1016/j.jclepro.2018.01.073
  16. Demir, U., Yamik, A., Kelebek, S., Oteyaka, B., Ucar, A., and Sahbaz, O., "Characterization and Column Flotation of Bottom Ashes from Tuncbilek Power Plant," Fuel, 87, 666-672 (2008). https://doi.org/10.1016/j.fuel.2007.05.040
  17. Zhou, F., Yan, C., Wang, H., Zhou, S., and Liang, H., "The Result of Surfactants on Froth Flotation of Unburned Carbon from Coal Fly Ash," Fuel, 190, 182-188 (2017). https://doi.org/10.1016/j.fuel.2016.11.032
  18. Emre Altun, N., Xiao, C., and Hwang, J.-Y., "Separation of Unburned Carbon from Fly Ash using a Concurrent Flotation Column," Fuel Process. Technol., 90, 1464-1470 (2009). https://doi.org/10.1016/j.fuproc.2009.06.029
  19. Niewiadomski, M., Hupka, J., Bokotko, R., and Miller, J. D., "Recovery of Coke Fines from Fly Ash by Air Sparged Hydrocyclone Flotation," Fuel, 78, 161-168 (1999). https://doi.org/10.1016/S0016-2361(98)00145-8
  20. Hurst, V. J., and Styron, R. W., "Coal Fly Ash Beneficiation process," US patent 4121945, (1978).
  21. Gray, M. L., Champagne, K. J., Soong, Y., Killmeyer, R., Maroto Valer, M. M., and Andresen, J. M., "Physical Cleaning of High Carbon Fly Ash," Fuel Process. Technol., 76, 11-21 (2002). https://doi.org/10.1016/S0378-3820(02)00006-1
  22. Yang, L., Zhu, Z., Li, D., Yan, X., and Zhang, H., "Effects of Particle Size on the Flotation Behavior of Coal Fly Ash," Waste Manage., 85, 490-497 (2019). https://doi.org/10.1016/j.wasman.2019.01.017
  23. Kim, D.-S., Han, G. S., and Lee, D.-K., "Recycling of Useful Materials from Fly Ash of Coal-fired Power Plant," Clean Technol., 25(3), 179-188 (2019). https://doi.org/10.7464/KSCT.2019.25.3.179
  24. Jena, M. S., Biswal, S. K., and Rudramuniyappa, M. V., "Study on Flotation Characteristics of Oxidised Indian High Ash Sub-bituminous Coal," Int. J. Miner. Process, 87, 42-50 (2008). https://doi.org/10.1016/j.minpro.2008.01.004
  25. Ivanov, D. S., Levic, J. D., and Sredanovic, S. A., "Fatty Acid Composition of Various Soybean Products," Journal of the Institute for Food Technology in Novi Sad., 37(2), 65-70 (2010).
  26. Brandao, P. R. G., Caires, L. G., and Queiroz, D. S. B., "Vegetable Lipid Oil-based Collectors in the Flotation of Apatite Ores," Miner. Eng., 7(7), 917-925 (1994). https://doi.org/10.1016/0892-6875(94)90133-3
  27. Abdullah, B. M., Salih, N., and Salimon, J., "Optimization of the Chemoenzymatic Mono-epoxidation of Linoleic Acid Using D-optimal Design," J. Saudi Chem. Soc., 18(3), 276-287 (2014). https://doi.org/10.1016/j.jscs.2011.07.012

Cited by

  1. 고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용 vol.27, pp.1, 2020, https://doi.org/10.7464/ksct.2021.27.1.24