DOI QR코드

DOI QR Code

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel

고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석

  • YU, DONGJIN (Department of Mechanical Engineering, Graduate School, Chungnam National University) ;
  • JI, HYUNJIN (Agency for Defense Development) ;
  • YU, SANGSEOK (School of Mechanical Engineering, Chungnam National University)
  • Received : 2020.08.28
  • Accepted : 2020.10.30
  • Published : 2020.10.30

Abstract

A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

Keywords

References

  1. N. Z. Muradov and T. N. Veziroglu, ""Green" path from fossil-based to hydrogen economy: an overview of carbonneutral technologies", Int. J. Hydrog. Energy, Vol. 33, No. 23, 2008, pp. 6804-6839, doi: https://doi.org/10.1016/j.ijhydene.2008.08.054.
  2. M. Steinberg, "Fossil fuel decarbonization technology for mitigating global warming", Int. J. Hydrog. Energy, Vol. 24, No. 8, 1999, pp. 771-777, doi: https://doi.org/10.1016/S0360-3199(98)00128-1.
  3. A. L. Dicks, "Hydrogen generation from natural gas for the fuel cell systems of tomorrow", J. Power Sources, Vol. 61, No. 1-2, 1996, pp. 113-124, doi: https://doi.org/10.1016/s0378-7753(96)02347-6.
  4. C. Song, "Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century", Catal. Today, Vol. 77, No. 1-2, 2002, pp. 17-49, doi: https://doi.org/10.1016/s0920-5861(02)00231-6.
  5. L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells: principles, types, fuels, and applications", ChemPhysChem, Vol. 1, No. 4, 2000, pp. 162-193, doi: https://doi.org/10.1002/1439-7641(20001215)1:4%3C162::aid-cphc162%3E3.0.co;2-z.
  6. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, and J. Shen, "A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation", J. Power Sources, Vol. 165, No. 2, 2007, pp. 739-756, doi: https://doi.org/10.1016/j.jpowsour.2006.12.012.
  7. S. Kelouwani, K. Agbossou, and R. Chahine. "Model for energy conversion in renewable energy system with hydrogen storage", J. Power Sources, Vol. 140, No. 2, 2005, pp. 392-399, doi: https://doi.org/10.1016/j.jpowsour.2004.08.019.
  8. A. Zuttel, "Hydrogen storage methods", Naturwissenschaften, Vol. 91, No. 4, 2004, pp. 157-172, doi: https://doi.org/10.1007/s00114-004-0516-x.
  9. F. A. de Bruijn, "Hydrogen as a future energy carrier. Edited by Andreas Zuttel, Andreas Borgschulte, and Louis Schlapbach.", ChemSusChem, Vol. 1, No. 8-9, 2008, pp. 782-783, doi: https://doi.org/10.1002/cssc.200800119.
  10. K. Faungnawakij, R. Kikuchi, and K. Eguchi, "Thermodynamic evaluation of methanol steam reforming for hydrogen production", J. Power Sources, Vol. 161, No. 1, 2006, pp. 87-94, doi: https://doi.org/10.1016/j.jpowsour.2006.04.091.
  11. G. Schuller, F. V. Vazquez, W. Waiblinger, S. Auvinen, and P. Ribeirinha, "Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer", J. Power Sources, Vol. 347, 2017, pp. 47-56, doi: https://doi.org/10.1016/j.jpowsour.2017.02.021.
  12. H. Ji, J. Lee, E. Choi, and S. Yang, "Methanol steam reforming using multilayer cup structure for catalyst support", Trans. Korean Hydrog. New Energy Soc., Vol. 31, No. 2, 2020, pp. 202-209, doi: https://doi.org/10.7316/KHNES.2020.31.2.202.
  13. U. Cheon, K. Ahn, and H. Shin, "Study on the characteristics of methanol steam reformer using latent heat of steam", Trans. Korean Hydrog. New Energy Soc., Vol. 29, No. 1, 2018, pp. 19-24, doi: https://doi.org/10.7316/KHNES.2018.29.1.19.
  14. R. O. Idem and N. N. Bakhshi, "Production of hydrogen from methanol. 2. experimental studies", Ind. Eng. Chem. Res., Vol. 33, No. 9, 1994, pp. 2056-2065, doi: https://doi.org/10.1021/ie00033a006.
  15. J. S. Suh, M. T. Lee, R. Greif, and C. P. Grigoropoulos, "A study of steam methanol reforming in a microreactor", J. Power Sources, Vol. 173, No. 1, 2007, pp. 458-466, doi: https://doi.org/10.1016/j.jpowsour.2007.04.038.
  16. H. Jang, I. S. Park, and J. S. Suh, "Study on methanol conversion efficiency and mass transfer of steam-methanol reforming on flow rate variation in curved channel", Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 3, 2015, pp. 261-269, doi: https://doi.org/10.3795/ksme-b.2015.39.3.261.
  17. P. Ribeirinha, M. Abdollahzadeh, M. Boaventura, and A. Mendes, "$H_2$ production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell", Appl. Energy, Vol. 88, 2017, pp. 409-419, doi: https://doi.org/10.1016/j.apenergy.2016.12.015.
  18. W. Wiese, B. Emonts, and R. Peters, "Methanol steam reforming in a fuel cell drive system", J. Power Sources, Vol. 84, No. 2, 1999, pp. 187-193, doi: https://doi.org/10.1016/s0378-7753(99)00316-x.