DOI QR코드

DOI QR Code

Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area

Sentienl-1 SAR 토양수분 산정 연구: 농지와 초지지역을 중심으로

  • Cho, Seongkeun (Department of Water Resources, Sungkyunkwan University) ;
  • Jeong, Jaehwan (Department of Water Resources, Sungkyunkwan University) ;
  • Lee, Seulchan (Department of Water Resources, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University)
  • 조성근 (성균관대학교 수자원학과) ;
  • 정재환 (성균관대학교 수자원학과) ;
  • 이슬찬 (성균관대학교 수자원학과) ;
  • 최민하 (성균관대학교 수자원학과)
  • Received : 2020.08.27
  • Accepted : 2020.09.21
  • Published : 2020.11.30

Abstract

Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there're still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.

최근 인공위성 자료를 기반으로 한 수자원 관측 분야에서는 공간해상도의 한계를 극복하기 위한 방안으로 SAR (Synthetic Aperture Radar) 센서에 대한 관심이 높아지고 있다. 토양수분을 관측하는 기존 위성 자료가 10 km 이상의 공간해상도를 지닌 반면, SAR 센서는 후방산란계수를 10 m 까지 관측할 수 있으므로 공간적인 분포를 보다 세밀하게 분석할 수 있다. 이러한 자료를 활용하기 위해서는 관측된 후방산란계수에 다양한 수문인자 및 환경적 요인이 미치는 영향을 다각적으로 분석하여 토양수분을 산출하는 과정이 필요하다. 본 연구는 토양수분 산정에 주로 적용되고 있는 WCM(Water Cloud Model)과 선형회귀 기법을 국내 5개 지점에 적용함으로써, SAR 영상을 기반으로 토양수분을 산정하고 이를 지점 관측 자료와 비교하여 평가하고자 하였다. WCM의 경우 토양수분의 즉각적인 변화를 관측하기에 용이하나 오차에 대한 보정이 필요한 것으로 판단되며, 선형회귀 방법은 순간적인 토양수분의 변동이 크게 나타나지 않았으나 안정적인 오차 범위를 나타내었다. 또한 토양수분이 후방산란계수에 미치는 영향은 토지피복, 식생의 분포, 식생 내 수분량의 정도에 따라 모델별로 크게 상이한 결과를 나타냄을 알 수 있으며, 기존의 모델을 동일하게 적용하기에는 한계점이 많음을 알 수 있다. 따라서 복잡한 지형적, 수문학적 특성을 가진 한반도에서 SAR 영상을 수자원 분야에 적용하기 위해서는, 추후 각 지점 별 특성에 따른 영향을 다각적으로 분석하는 과정이 필수적이며 한반도에 적합한 토양수분 모델을 구축하기 위한 연구가 수행되어야 할 것으로 판단된다.

Keywords

References

  1. Ahmad, W., and Kim, D. (2019). "Estimation of flow in various sizes of streams using the sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea." International Journal of Applied Earth Observation and Geoinformation, Vol. 83, 101930. https://doi.org/10.1016/j.jag.2019.101930
  2. Attema, E.P.W., and Ulaby, F.T. (1978). "Vegetation modeled as a water cloud." Radio science, Vol. 13, No. 2, pp. 357-364. https://doi.org/10.1029/RS013i002p00357
  3. Baghdadi, N., El Hajj, M., Zribi, M., and Bousbih, S. (2017). "Calibration of the water cloud model at C-band for winter crop fields and grasslands." Remote Sensing, Vol. 9, No. 9, p. 969. https://doi.org/10.3390/rs9090969
  4. Ban, Y., Zhang, P., Nascetti, A., Bevington, A.R., and Wulder, M.A. (2020). "Near real-time wildfire progression monitoring with sentinel-1 SAR time series and deep learning." Scientific Reports, Vol, 10, No. 1, pp. 1-15. https://doi.org/10.1038/s41598-019-56847-4
  5. Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner, W. (2018). "Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles." IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 1, pp. 520-539. https://doi.org/10.1109/tgrs.2018.2858004
  6. Bouman, B.A., and van Kasteren, H.W. (1990). "Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. I. Sugar beet and potato; backscattering and crop growth." Remote Sensing of Environment, Vol. 34, No. 2, pp. 93-105. https://doi.org/10.1016/0034-4257(90)90101-Q
  7. Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., El Hajj, M., Gao, Q., and Mougenot, B. (2017). "Potential of Sentinel-1 radar data for the assessment of soil and cereal cover parameters." Sensors, Vol. 17, No. 11, p. 2617. https://doi.org/10.3390/s17112617
  8. Chang, J.G., Shoshany, M., and Oh, Y. (2018). "Polarimetric radar vegetation index for biomass estimation in desert fringe ecosystems." IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 12, pp. 7102-7108. https://doi.org/10.1109/TGRS.2018.2848285
  9. Charpentier, M.A., and Groffman, P. M. (1992). "Soil moisture variability within remote sensing pixels." Journal of Geophysical Research: Atmospheres, Vol. 97, No. D17, pp. 18987-18995. https://doi.org/10.1029/92JD00882
  10. Choi, D. Ahn, J.H., Jo, D., and Kim, S. (2010). "Estimating climate change impact on drought occurrence based on the soil moisture." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 709-720. https://doi.org/10.3741/JKWRA.2010.43.8.709
  11. Chun, J.A., Kim, S.T., Lee, W.S., and Kim, D. (2020). "Assessment of Noah land surface model-based soil moisture using GRACE-observed TWSA and TWSC." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 285-291. https://doi.org/10.3741/JKWRA.2020.53.4.285
  12. Dubois, P.C., Van Zyl, J., and Engman, T. (1995). "Measuring soil moisture with imaging radars." IEEE transactions on geoscience and remote sensing, Vol. 33, No. 4, pp.915-926. https://doi.org/10.1109/36.406677
  13. Ezzahar, J., Ouaadi, N., Zribi, M., Elfarkh, J., Aouade, G., Khabba, S., Er-Raki, S., Chehbouni, A., and Jarlan, L. (2020). "Evaluation of backscattering models and support vector machine for the retrieval of bare soil moisture from Sentinel-1 data." Remote Sensing, Vol. 12, No. 1, p. 72.
  14. Hajnsek, I., Jagdhuber, T., Schon, H., and Papathanassiou, K.P. (2009). "Potential of estimating soil moisture under vegetation cover by means of PolSAR." IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 2, pp. 442-454. https://doi.org/10.1109/TGRS.2008.2009642
  15. Huang, J., Hartemink, A.E., Arriaga, F., and Chaney, N.W. (2019). "Unraveling location-specific and time-dependent interactions between soil water content and environmental factors in cropped sandy soils using Sentinel-1 and moisture probes." Journal of Hydrology, Vol. 575, pp. 780-793. https://doi.org/10.1016/j.jhydrol.2019.05.075
  16. Jackson, T.J. (1993). "III. Measuring surface soil moisture using passive microwave remote sensing." Hydrological processes, Vol. 7, No. 2, pp. 139-152. https://doi.org/10.1002/hyp.3360070205
  17. Joseph, A.T., van der Velde, R., O'Neill, P.E., Lang, R.H., and Gish, T. (2008). "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations." IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 8, pp. 2365-2374. https://doi.org/10.1109/TGRS.2008.917214
  18. Kim, B., Kim, S., Kim, H., and Jun, H. (2010a). "An impact assessment of climate and landuse change on water resources in the Han River." Journal of Korea Water Resources Association, Vol. 43, No. 3, pp. 309-323. https://doi.org/10.3741/JKWRA.2010.43.3.309
  19. Kim, G., and Park, H. (2010b). "Soil moisture estimation using CART algorithm and ancillary data." Journal of Korea Water Resources Association, Vol. 43, No. 7, pp. 597-608. https://doi.org/10.3741/JKWRA.2010.43.7.597
  20. Kim, G.S., and Lee, E.R. (2004a). "Development a downscaling method of remotely-sensed soil moisture data using neural networks and ancillary data." Journal of Korea Water Resources Association, Vol. 37, No. 1, pp. 21-29. https://doi.org/10.3741/JKWRA.2004.37.1.021
  21. Kim, K., Lee, Y., Jung, S., and Lee, Y. (2019). "An analysis of runoff characteristic by using soil moisture in Sulma basin." Journal of Korea Water Resources Association, Vol. 52, No. 9, pp. 615-626.
  22. Kim, S., Kim, H., and Choi, M. (2016). "Evaluation of satellite-based soil moisture retrieval over the Korean Peninsula: Using AMSR2 LPRM algorithm and ground measurement data." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 423-429 https://doi.org/10.3741/JKWRA.2016.49.5.423
  23. Kim, U.T., Lee, D.R., and Yoo, C.S. (2004b). "Effects of climate change on the streamflow for the Daechung dam watershed." Journal of Korea Water Resources Association, Vol. 37, No. 4, pp. 305-314. https://doi.org/10.3741/JKWRA.2004.37.4.305
  24. Kumar, K., Hari Prasad, K.S., and Arora, M.K. (2012). "Estimation of water cloud model vegetation parameters using a genetic algorithm." Hydrological Sciences Journal, Vol. 57, No. 4, pp. 776-789. https://doi.org/10.1080/02626667.2012.678583
  25. Lee, D., Lee, G., Song, B., and Lee, S. (2019). "Analysis of climate change impact on flow duration characteristics in the Mekong River." Journal of Korea Water Resources Association, Vol. 52, No. 1, pp. 71-82.
  26. Lee, J., Kim, Y., and Chae, Y. (2020). "Projecting future hydrological and ecological droughts with the climate and land use scenarios over the Korean peninsula." Journal of Korea Water Resources Association, Vol. 53, No. 6, pp. 427-436. https://doi.org/10.3741/JKWRA.2020.53.6.427
  27. Leib, B.G., Jabro, J.D., and Matthews, G.R. (2003). "Field evaluation and performance comparison of soil moisture sensors." Soil Science, Vol. 168, No. 6, pp. 396-408. https://doi.org/10.1097/01.ss.0000075285.87447.86
  28. Liu, C., and Shi, J. (2016). "Estimation of vegetation parameters of water cloud model for global soil moisture retrieval using time-series L-band Aquarius observations." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 12, pp. 5621-5633. https://doi.org/10.1109/JSTARS.2016.2596541
  29. Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H., and Rao, Y.S. (2020). "Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data." Remote Sensing of Environment, Vol. 247, 111954. https://doi.org/10.1016/j.rse.2020.111954
  30. McColl, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., Yueh, S., and Entekhabi, D. (2017). "The global distribution and dynamics of surface soil moisture." Nature Geoscience, Vol. 10, No. 2, pp. 100-104. https://doi.org/10.1038/ngeo2868
  31. Millard, K., and Richardson, M. (2018). "Quantifying the relative contributions of vegetation and soil moisture conditions to polarimetric C-Band SAR response in a temperate peatland." Remote Sensing of Environment, Vol. 206, pp. 123-138. https://doi.org/10.1016/j.rse.2017.12.011
  32. Mladenova, I.E., Jackson, T.J., Bindlish, R., and Hensley, S. (2012). "Incidence angle normalization of radar backscatter data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 3, pp. 1791-1804. https://doi.org/10.1109/TGRS.2012.2205264
  33. Njoku, E.G., and Entekhabi, D. (1996). "Passive microwave remote sensing of soil moisture." Journal of hydrology, Vol. 184, No. 1-2, pp. 101-129. https://doi.org/10.1016/0022-1694(95)02970-2
  34. Notarnicola, C., Angiulli, M., and Posa, F. (2008). "Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method." IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 2, pp. 547-557. https://doi.org/10.1109/TGRS.2007.909951
  35. Oh, Y. (2004). "Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces." IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 3, pp. 596-601. https://doi.org/10.1109/TGRS.2003.821065
  36. Ohkura, H. (1998). "Application of SAR data to monitoring earth surface changes and displacement." Advances in Space Research, Vol. 21, No. 3, pp. 485-492. https://doi.org/10.1016/S0273-1177(97)00885-5
  37. Olsson, U.H., Foss, T., Troye, S.V., and Howell, R.D. (2000). "The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality." Structural equation modeling, Vol. 7, No. 4, pp. 557-595. https://doi.org/10.1207/S15328007SEM0704_3
  38. Pierdicca, N., Pulvirenti, L., and Pace, G. (2013). "A prototype software package to retrieve soil moisture from Sentinel-1 data by using a bayesian multitemporal algorithm." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 1, pp. 153-166. https://doi.org/10.1109/JSTARS.2013.2257698
  39. Poole, M.A. (1971). "The assumptions of the linear regression model." Transactions of the Institute of British Geographers, Vol. 52, pp. 145-158. https://doi.org/10.2307/621706
  40. Prevot, L., Champion, I., and Guyot, G. (1993). "Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer." Remote Sensing of Environment, Vol. 46, No. 3, pp. 331-339. https://doi.org/10.1016/0034-4257(93)90053-Z
  41. Seo, M., Kim, D., Ahmad, W., and Cha, J.H. (2018). "Estimation of stream flow discharge using the satellite synthetic aperture radar images at the mid to small size streams." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1181-1194.
  42. Srivastava, H.S., Patel, P., Sharma, Y., and Navalgund, R.R. (2009). "Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data." IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, pp. 2528-2535. https://doi.org/10.1109/TGRS.2009.2018448
  43. Twele, A., Cao, W., Plank, S., and Martinis, S. (2016). "Sentinel-1-based flood mapping: A fully automated processing chain." International Journal of Remote Sensing, Vol. 37, No. 13, pp. 2990-3004. https://doi.org/10.1080/01431161.2016.1192304
  44. Ulaby, F.T. (1982). Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory. Artech House, Norwood, M.A., U.S., pp. 848-902.
  45. Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Rudiger, C., and Strauss, P. (2018). "Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study." Remote Sensing, Vol. 10, No. 9, p. 1396. https://doi.org/10.3390/rs10091396
  46. Zhuo, W., Huang, J., Li, L., Zhang, X., Ma, H., Gao, X., Huang, H., Xu, B., and Xiao, X. (2019). "Assimilating soil moisture retrieved from Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation." Remote Sensing, Vol. 11, No.13, p. 1618. https://doi.org/10.3390/rs11131618