DOI QR코드

DOI QR Code

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim (Faculty of Information Technology, Ton Duc Thang University) ;
  • Crosbie, Robert C. (Faculty of Mathematics, Technische Universitat Dresden) ;
  • Anandkumarb, Azita (Computing and Mathematical Sciences, University of Bath) ;
  • Melville, Charles (Department Electrical & Electronic Engineering, University of Bath) ;
  • Chan, Jcy (Department Electrical & Electronic Engineering, University of Bath)
  • Received : 2020.06.03
  • Accepted : 2020.11.20
  • Published : 2021.01.25

Abstract

This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Keywords

References

  1. Adeli, H. and Jiang, X.M. (2006), "Dynamic fuzzy wavelet neural network model for structural system identification", J. Struct. Eng., ASCE, 132(1), 102-111. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102).
  2. Afshar, A., Jahandari, S., Rasekh, H., Shariati, M., Afshar, A. and Shokrgozar, A. (2020), "Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives", Constr. Build. Mater., 262, 120034. https://doi.org/10.1016/j.conbuildmat.2020.120034.
  3. Al-Amoudi, O.S.B., Ahmad, S., Khan, S. and Maslehuddin, M. (2019), "Durability performance of concrete containing Saudi natural pozzolans as supplementary cementitious material", Adv. Concrete Constr., 8(2), 119-126. https://doi.org/10.12989/acc.2019.8.2.119.
  4. Alaskar, A., Alyousef, R., Alabduljabbar, H., Alrshoudi, F., Mohamed, A.M., Jermsittiparsert, K. and Ho, L.S. (2020), "Elevated temperature resistance of concrete columns with axial loading", Adv. Concrete Constr., 9(4), 355-365. https://doi.org/10.12989/acc.2020.9.4.355.
  5. Arif Sen, M., Tinkir, M. and Kalyoncu, M. (2018), "Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm", J. Low Freq. Noise Vib. Active Control, 37(1), 146134841875790. https://doi.org/10.1177/1461348418757906.
  6. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  7. Benyahia, A. and Ghrici, M. (2018), "Behaviour of self compacting repair mortars based on natural pozzolana in hot climate", Adv. Concrete Constr., 6(3), 285-296. https://doi.org/10.12989/acc.2018.6.3.285.
  8. Chen, C.W. (2014a), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  9. Chen, C.W. (2014b), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  10. Chen, T. (2020), "An intelligent algorithm optimum for building design of fuzzy structures", Iran J. Sci. Technol, Trans Civil Eng., 44, 523-531. https://doi.org/10.1007/s40996-019-00251-5.
  11. Chen, T. (2020), "Evolved fuzzy NN control for discrete-time nonlinear systems", J. Circuits Syst. Comput., 29(1), 2050015. https://doi.org/10.1142/S0218126620500152.
  12. Chen, T. (2020), "LMI based criterion for reinforced concrete frame structures", Adv. Concrete Constr., 9(4), 407-412. https://doi.org/10.12989/acc.2020.9.4.407.
  13. Chen, T. (2020), "On the algorithmic stability of optimal control with derivative operators", Circuits Syst. Signal Pr., 39(12), 5863-5881. https://doi.org/10.1007/s00034-020- 01447-1.
  14. Chen, T., Khurram, S. and Cheng, C. (2019), "A relaxed structural mechanics and fuzzy control for fluid-structure dynamic analysis", Eng. Comput., 36(7), 2200-2219. https://doi.org/10.1108/EC-11-2018-0522.
  15. Chen, T., Khurram, S. and Cheng, C. (2019), "Prediction and control of buildings with sensor actuators of fuzzy EB algorithm", Earthq. Struct., 17(3), 307-315. https://doi.org/10.12989/eas.2019.17.3.307.
  16. Chung, H. and Chan, S. (2009), "GA-based H2, H∞ static output feedback design with average performance concept and techniques", Exp. Syst. Appl., 43, 5859-5865. https://doi.org/10.1016/j.eswa.2008.07.071.
  17. Connor, J.J. (2003), Introduction to Structural Motion Control, Prentice-Hall, Upper Saddle River, NJ.
  18. Eswaran, M. and Reddy, G.R. (2016), "Numerical simulation of tuned liquid tank-structure systems through sigmatransformation based fluid-structure coupled solver", Wind Struct., 23(5), 421-447. https://doi.org/10.12989/was.2016.23.5.421.
  19. Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concrete Constr., 5(6), 659-669. http://dx.doi.org/10.12989/acc.2017.5.6.659.
  20. Kalman, R.E. (1963), "New methods in Wiener filtering theory", Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability, John Wiley & Sons, New York.
  21. Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D.T., Kianmehr, P., ... & Khorami, M. (2019), "Application of polymer, silicafume and crushed rubber in the production of Pervious concrete", Smart Struct. Syst., 23(2), 207-214. https://doi.org/10.12989/sss.2019.23.2.207.
  22. Lu, L.T., Chiang, W.L. and Tang, J.P. (1998), "LQG/LTR control methodology in active structure control", J. Eng. Mech., ASCE, 124(4), 446-454. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(446).
  23. Luo, L., Nguyen, H., Alabduljabbar, H., Alaskar, A., Alrshoudi, F., Alyousef, R., ... & Dang, H.M. (2020), "Depiction of concrete structures with seismic separation under faraway fault earthquakes", Adv. Concrete Constr., 9(1), 71-82. https://doi.org/10.12989/acc.2020.9.1.071.
  24. Mossaheb, S. (1983), "Application of a method of averaging to the study of dithers in nonlinear systems", Int. J. Control, 38, 557-576. https://doi.org/10.1080/00207178308933094.
  25. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., 28(4), 483-494. https://doi.org/10.12989/scs.2018.28.4.483.
  26. Preumont, A. (2011), Vibration Control of Active Structures: An Introduction, Springer.
  27. Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct, 26(3), 179-190. https://doi.org/10.12989/was.2018.26.3.179.
  28. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. http://dx.doi.org/10.12989/scs.2016.21.3.679.
  29. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. http://dx.doi.org/10.12989/scs.2018.29.2.243.
  30. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020), "A novel hybrid extreme learning machine-grey wolf optimizer (ELMGWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  31. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  32. Sharma, S.K., Ransinchung, G. and Kumar, P. (2018), "Investigating the use of wollastonite micro fiber in yielding SCC", Adv. Concrete Constr., 6(2), 123-143. http://dx.doi.org/10.12989/acc.2018.6.2.123.
  33. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  34. Stein, G. and Athans, M. (1987), "The LQG/LTR procedure for multivariable feedback control design", IEEE Tran. Autom. Control, 32(2), 105-114. https://doi.org/10.1109/TAC.1987.1104550.
  35. Steinberg, A.M. and Kadushin, I. (1973), "Stabilization of nonlinear systems with dither control", J. Math. Anal. Appl., 43, 273-284. https://doi.org/10.1016/0022-247X(73)90275-8.
  36. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  37. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134.
  38. Wang H.O. and Tanaka, K. (1996), "An LMI-based stable fuzzy control of nonlinear systems and its application to control of chaos", IEEE Int. Conf. Fuzzy Syst., 1433-1438.
  39. Wang, H.O., Tanaka, K. and Griffin, M.F. (1996), "An approach to fuzzy control of nonlinear systems: stability and design issues", IEEE Tran. Fuzzy Syst., 4, 14-23. https://doi.org/10.1109/91.481841
  40. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  41. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., ... & Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  42. Yang, J.N., Wu, J.C., Agrawal, A.K. and Li, Z. (1995), "Sliding mode control for nonlinear and hysteric structures", J. Eng. Mech., ASCE, 121(12), 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330)
  43. Yang, J.N., Wu, J.C., Samali, B. and Agrawal, A.K. (1998), "A benchmark problem for response control of wind-excited tall buildings", Proc. 2nd world Conference on Structural Control, 2, 1407-1416.
  44. Yu, L., Zhou, S. and Deng, W. (2015), "Properties and pozzolanic reaction degree of tuff in cement-based composite", Adv. Concrete Constr., 3(1), 71-90. https://doi.org/10.12989/acc.2015.3.1.071
  45. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439.
  46. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  47. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.
  48. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018), "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. http://dx.doi.org/10.12989/scs.2018.29.1.067.

Cited by

  1. Smart structural control and analysis for earthquake excited building with evolutionary design vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.131