DOI QR코드

DOI QR Code

Seismic demand assessment of semi-rigid steel frames at different performance points

  • Sharma, Vijay (Department of Applied Mechanics, Government Engineering College) ;
  • Shrimali, Mahendra K. (National Centre for Disaster Mitigation and Management, Malaviya National Institute of Technology Jaipur) ;
  • Bharti, Shiv D. (National Centre for Disaster Mitigation and Management, Malaviya National Institute of Technology Jaipur) ;
  • Datta, Tushar K. (National Centre for Disaster Mitigation and Management, Malaviya National Institute of Technology Jaipur)
  • Received : 2021.03.26
  • Accepted : 2021.11.08
  • Published : 2021.12.10

Abstract

The seismic performance of rigid steel frames is widely investigated, but that of semi-rigid (SR) steel frames are not studied extensively, especially for near-field earthquakes. In this paper, the performances of five and ten-story steel SR frames having different degrees of semi-rigidity are evaluated at four performance points in the four different deformation states, namely, the elastic, elasto-plastic, plastic, and near collapse states. The performances of the SR frames are measured by the response parameters including the maximum values of the top floor displacement, base shear, inter-story drift ratio, number of plastic hinges, and SRSS of plastic hinge rotations. These response parameters are obtained by the capacity spectrum method (CSM) using pushover analysis. The validity of the response parameters determined by the CSM is evaluated by the results of the nonlinear time history analysis (NLTHA) for both near and far-field earthquakes at different PGA levels, which are consistent with the performance points. Results of the study show that the plastic hinges of SR frame significantly increase in the range of plastic to near-collapse states for both near and far-field earthquakes. The effect of the degree of semi-rigidity is pronounced only at higher degrees of semi-rigidity. The predictions of the CSM are fairly well in comparison to the NLTHA.

Keywords

References

  1. Abedini, M. and Zhang, C. (2021), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, 113473. https://doi.org/10.1016/j.compstruct.2020.113473.
  2. Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., 77(4), 441-461. https://doi.org/10.12989/sem.2021.77.4.441.
  3. Aksoylar, N.D., Elnashai, A.S. and Mahmoud, H. (2011), "The design and seismic performance of low-rise long-span frames with semi-rigid connections", J. Constr. Steel Re., 67(1), 114-126. https://doi.org/10.1016/j.jcsr.2010.07.001.
  4. Al-Bermani, F., Li, B., Zhu, K. and Kitipornchai, S. (1994), "Cyclic and seismic response of flexibly jointed frames", Eng. Struct., 16(4), 249-255. https://doi.org/10.1016/0141-0296(94)90064-7.
  5. Alam, Z., Zhang, C. and Samali, B. (2020), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec. Build., 29(12), e1750. https://doi.org/10.1002/tal.1750.
  6. Alam, Z., Zhang, C. and Samali, B. (2020), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.
  7. Alam, Z., Sun, L., Zhang, C., Su, Z. and Samali, B. (2021), "Experimental and numerical investigation on the complex behaviour of the localised seismic response in a multi-storey plan-asymmetric structure", Struct. Infrastruct. Eng., 17(1), 86-102. https://doi.org/10.1080/15732479.2020.1730914.
  8. ANSI/AISC-341 (2016), Seismic provisions for structural steel buildings, Chicago, Illinois 60601-1802.
  9. ANSI/AISC (2016), "ANSI/AISC 360-16 (2010): Specification for Structural Steel Buildings ".
  10. ASCE-41 (2017), ASCE 41-17: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings,
  11. ATC-40 (1996), "Applied Technology Council-Seismic evaluation and retrofit of concrete buildings", Rep. No. SSC 96-01: ATC40(1).
  12. Awkar, J. and Lui, E. (1999), "Seismic analysis and response of multistory semirigid frames", Eng. Struct., 21(5), 425-441. https://doi.org/10.1016/S0141-0296(97)00210-1.
  13. Aydinoglu, M.N. (2003), "An incremental response spectrum analysis procedure based on inelastic spectral displacements for multi-mode seismic performance evaluation", Bull. Earthq. Eng., 1(1), 3-36. https://doi.org/10.1023/A:1024853326383.
  14. Bayat, M. and Zahrai, S.M. (2017), "Seismic performance of midrise steel frames with semi-rigid connections having different moment capacity", Steel Compos. Struct., 25(1), 1-17. https://doi.org/10.12989/scs.2017.25.1.001.
  15. Belejo, A. and Bento, R. (2016), "Improved modal pushover analysis in seismic assessment of asymmetric plan buildings under the influence of one and two horizontal components of ground motions", Soil Dynam. Earthq. Eng., 87, 1-15. https://doi.org/10.1016/J.SOILDYN.2016.04.011.
  16. Bhandari, M., Bharti, S., Shrimali, M. and Datta, T. (2018), "Assessment of proposed lateral load patterns in pushover analysis for base-isolated frames", Eng. Struct., 175, 531-548. https://doi.org/10.1016/j.engstruct.2018.08.080.
  17. Chan, S.L. and Chui, P.T. (2000), Non-linear static and cyclic analysis of steel frames with semi-rigid connections.
  18. Chopra, A.K. (2007), Dynamics of structures. Pearson Education India.
  19. Council, A.T. (2005), Improvement of nonlinear static seismic analysis procedures, FEMA Region II
  20. Comartin, C.D., Niewiarowski, R.W., Freeman, S.A. and Turner, F. M. (2000), "Seismic evaluation and retrofit of concrete buildings: a practical overview of the ATC 40 Document", Earthq. Spectra, 16(1), 241-261. https://doi.org/10.1193/1.1586093.
  21. Della Corte, G., De Matteis, G., Landolfo, R. and Mazzolani, F. (2002), "Seismic analysis of MR steel frames based on refined hysteretic models of connections", J. Constr. Steel Res., 58(10), 1331-1345. https://doi.org/10.1016/S0143-974X(02)00014-7.
  22. Diaz, C., Marti, P., Victoria, M. and Querin, O.M. (2011), "Review on the modelling of joint behaviour in steel frames", J. Constr. Steel Res., 67(5), 741-758. https://doi.org/10.1016/j.jcsr.2010.12.014.
  23. Diaferio, M. and Foti, D. (2016), "Mechanical behavior of buildings subjected to impulsive motions", Bull. Earthq. Eng., 14(3), 849-862. https://doi.org/10.1007/s10518-015-9848-5.
  24. Elnashai, A. and Elghazouli, A. (1994), "Seismic behaviour of semi-rigid steel frames", J. Constr. Steel Res., 29(1-3), 149-174. https://doi.org/10.1016/0143-974X(94)90060-4.
  25. Eurocode (2005), "Eurocode 3: Design of Steel Structures (Part 1-8: Design of Joints)", 1.
  26. Fajfar, P. (1999), "Capacity spectrum method based on inelastic demand spectra", Earthq. Eng. Struct. D., 28(9), 979-993. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1.
  27. Fajfar, P. and Gaspersic, P. (1996), "The N2 method for the seismic damage analysis of RC buildings", Earthq. Eng. Struct. D., 25(1), 31-46. https://doi.org/10.1002/(SICI)10969845(199601)25:1<31::AIDEQE534>3.0.CO;2-V.
  28. Faridmehr, I., Tahir, M.M., Lahmer, T. and Osman, M.H. (2017), "Seismic performance of steel frames with semirigid connections", J. Eng., 2017. https://doi.org/10.1155/2017/5284247.
  29. Feizi, M.G., Mojtahedi, A. and Nourani, V. (2015), "Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames", Steel Compos. Struct., 19(2), 467-484. http://doi.org/10.12989/scs.2015.19.2.467.
  30. FEMA (2000), "State of the art report on connection performance", FEMA-355D.
  31. FEMA-P695 (2009), "Quantification of building seismic performance factors". FEMA P695, Federal Emergency Management Agency.
  32. Freeman, S. (1975), The Capacity Spectrum Method as a tool for seismic design, Wiss, Janney, Elstner Associates, Inc.
  33. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026.
  34. Foti, D. (2014), "Response of frames seismically protected with passive systems in near-field areas", Int. J. Struct. Eng., 5(4), 326-345. http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijstructe https://doi.org/10.1504/IJSTRUCTE.2014.065916
  35. Han, S.W. and Chopra, A.K. (2006), "Approximate incremental dynamic analysis using the modal pushover analysis procedure", Earthq. Eng. Struct. D., 35(15), 1853-1873. https://doi.org/10.1002/eqe.605.
  36. Hasan, R., Xu, L. and Grierson, D. (2002), "Push-over analysis for performance-based seismic design", Comput. Struct., 80(31), 2483-2493. https://doi.org/10.1016/S0045-7949(02)00212-2.
  37. Hall, J.F. (2018), "On the descending branch of the pushover curve for multistory buildings", Earthq. Eng. Struct. D., 47(3), 772-783. https://doi.org/10.1002/eqe.2990.
  38. Hsieh, S.H. and Deierlein, G. (1991), "Nonlinear analysis of three-dimensional steel frames with semi-rigid connections", Comput. Struct., 41(5), 995-1009. https://doi.org/10.1016/0045-7949(91)90293-U.
  39. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  40. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  41. IS-800 (2007), "IS-800 (2007): General Construction in Steel-Code of Practice ", 3rd Revision.
  42. IS (2016), "IS 1893: 2016 Criteria for earthquake resistant design of structures", Part 1 General Provisions and Buildings (Sixth Revision).
  43. Kalkan, E. (2006), "Prediction of seismic demands in building structures", University of California, Davis.
  44. Kalkan, E. and Kunnath, S.K. (2007), "Assessment of current nonlinear static procedures for seismic evaluation of buildings", Eng. Struct., 29(3): 305-316. https://doi.org/10.1016/j.engstruct.2006.04.012.
  45. Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. Spectra, 22(2), 367-390. https://doi.org/10.1193/1.2192560.
  46. Kunnath, S.K. and Kalkan, E. (2004), "Evaluation of seismic deformation demands using nonlinear procedures in multistory steel and concrete moment frames", ISET J. Earthq. Technol., 41(1), 159-181. http://home.iitk.ac.in/~vinaykg/Iset445.
  47. Khanouki, A., Sulong, R. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel Composite Structures.
  48. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi Y., Jalali, A., and Tahir, M. (2017), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., 13(6), 531-538. https://doi.org/10.12989/eas.2017.13.6.531.
  49. Khorami, M., Masoud, K., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. http://doi.org/10.12989/sem.2017.63.2.259.
  50. Kishi, N. and Chen, W.F. (1990), "Moment-rotation relations of semirigid connections with angles", J. Struct. Eng., 116(7), 1813-1834. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813).
  51. Kitipomchai, S., Al-Bermani, F.G. and Chan, S.L. (1990), "Elastoplastic finite element models for angle steel frames", J. Struct. Eng., 116(10), 2567-2581. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2567).
  52. Krawinkler, H. and Al-Ali, A. (1996), "Seismic demand evaluation for a 4-story steel frame structure damaged in the northridge earthquake", Struct. Des. Tall Build., 5(1), 1-27. https://doi.org/10.1002/(SICI)1099-1794(199603)5:1<1::AIDTAL65>3.0.CO;2-W.
  53. Krawinkler, H. and Seneviratna, G. (1998), "Pros and cons of a pushover analysis of seismic performance evaluation", Eng. Struct., 20(4-6), 452-464. https://doi.org/10.1016/S0141-0296(97)00092-8.
  54. Krolo, P., Causevic, M. and Bulic, M. (2015), "Nonlinear seismic analysis of steel frame with semi-rigid joints", Gradevinar, 67(6), 573-583. https://doi.org/10.14256/JCE.1139.2014.
  55. Liu, Y., Xu, L. and Grierson, D.E. (2008), "Compound-element modeling accounting for semi-rigid connections and member plasticity", Eng. Struct., 30(5), 1292-1307. https://doi.org/10.1016/j.engstruct.2007.07.026.
  56. Lui, E. and Lopes, A. (1997), "Dynamic analysis and response of semirigid frames", Eng. Struct., 19(8), 644-654. https://doi.org/10.1016/S0141-0296(96)00143-5.
  57. Mahmoud, H.N., Elnashai, A.S., Spencer Jr, B.F., Kwon, O.S. and Bennier, D.J. (2013), "Hybrid simulation for earthquake response of semirigid partial-strength steel frames", J. Struct. Eng., 139(7), 1134-1148. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000721.
  58. Nader, M. and Astaneh, A. (1991), "Dynamic behavior of flexible, semirigid and rigid steel frames", J. Constr. Steel Res., 18(3), 179-192. https://doi.org/10.1016/0143-974X(91)90024-U.
  59. Paraskeva, T.S., Kappos, A.J. and Sextos, A.G. (2006), "Extension of modal pushover analysis to seismic assessment of bridges", Earthq. Eng. Struct. D., 35(10), 1269-1293. https://doi.org/10.1002/eqe.582.
  60. PEER (2013), PEER strong motion database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA. https://ngawest2.berkeley.edu/
  61. Pirmoz, A. and Liu, M.M. (2017), "Direct displacement-based seismic design of semi-rigid steel frames", J. Constr. Steel Res., 128, 201-209. https://doi.org/10.1016/j.jcsr.2016.08.015.
  62. Providakis, C.P. (2008), "Pushover analysis of base-isolated steel-concrete composite structures under near-fault excitations", Soil Dynam. Earthq. Eng., 28(4), 293-304. https://doi.org/10.1002/eqe.582.
  63. Reyes, J.C. and Kalkan, E. (2012), "How many records should be used in an ASCE/SEI-7 ground motion scaling procedure?", Earthq. Spectra, 28(3), 1223-1242. https://doi.org/10.1193/1.4000066.
  64. Roldan, R., Sullivan, T. and Della Corte, G. (2016), "Displacement-based design of steel moment resisting frames with partially-restrained beam-to-column joints", Bull. Earthq. Eng., 14(4), 1017-1046. https://doi.org/10.1007/s10518-016-9879-6.
  65. SAP2000 (2019), SAP 2000 v19 (2019): Integrated software for structural analysis and design, Computers and Structures, Inc, Berkeley, California.
  66. Sekulovic, M. and Nefovska-Danilovic, M. (2008), "Contribution to transient analysis of inelastic steel frames with semi-rigid connections", Eng. Struct., 30(4), 976-989. https://doi.org/10.1016/j.engstruct.2007.06.004.
  67. Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2018). " Behavior of Semi-Rigid Connected Steel Frames under Seismic Excitation", Paper no. 84, 16SEE: 16th Symposium on Earthquake Engineering, IIT Roorkee, India.
  68. Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2018). " Behavior of Mid Rise Semi-Rigid Connected Steel Frames under Near-Field and Far-Field Earthquakes", Paper No. 20180033_1, SEC18: Proceedings of the 11th Structural Engineering Convention - 2018, Jadavpur University, Kolkata, India.
  69. Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2019). "Seismic energy dissipation in semi-rigid connected steel frames", Proceedings of the 16th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Saint Petersburg, Russia. https://doi.org/10.13753/2686-7974-2019-16-705-717.
  70. Sharma, V., Shrimali, M., Bharti, S. and Datta, T. (2021), Seismic Energy Loss in Semi-rigid Steel Frames under Near-field Earthquakes, Springer Singapore. https://doi.org/10.1007/978-981-15-8138-0_33.
  71. Sharma, V., Shrimali, M.K., Bharti, S. and Datta, T. (2020), "Evaluation of responses of semi rigid frames at target displacements predicted by the nonlinear static analysis", Steel Compos. Struct., 36(4), 399-415. https://doi.org/10.12989/scs.2020.36.4.399.
  72. Sharma, V., Shrimali, M.K., Bharti, S. and Datta, T. (2020), Sensitivity of lateral load patterns on the performance assessment of semi-rigid frames, CRC Press/Balkema, Taylor and Francis Group, Schipholweg, 107C, 2316XC, Leiden, The Netherlands. https://doi.org/10.1201/978-0429-321573-12.
  73. Sharma, V., Shrimali, M.K., Bharti, S. and Datta, T. (2021), "Seismic fragility evaluation of semi-rigid frames subjected to near-field earthquakes", J. Constr. Steel Res., 176C, 15. https://doi.org/10.1016/j.jcsr.2020.106384.
  74. Sharma, V., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2020), "Behavior of semi-rigid steel frames under near-and far-field earthquakes", Steel Compos. Struct., 34(5), 625-641. https://doi.org/10.12989/scs.2019.34.5.625.
  75. Ye, M., Jiang, J., Chen, H.M., Zhou, H.Y. and Song, D.D. (2021), "Seismic behavior of an innovative hybrid beam-column connection for precast concrete structures", Eng. Struct., 227, 111436. https://doi.org/10.1016/j.engstruct.2020.111436.
  76. Zhang, C., Gholipour, G. and Mousavi, A.A. (2020), "Blast loads induced responses of RC structural members: State-of-the-art review", Compos. Part B: Eng., 195, 108066. https://doi.org/10.1016/j.compositesb.2020.108066.