DOI QR코드

DOI QR Code

The Formation of Anodic Oxide Film by Anodizing Voltage and Time of 6061 Aluminum Alloy

알루미늄 6061 합금의 양극 산화 인가 전압과 시간에 따른 표면의 산화피막층 형성 거동

  • Park, Youngju (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-eui University)
  • Received : 2020.09.29
  • Accepted : 2020.10.15
  • Published : 2021.01.01

Abstract

Aluminum is a lightweight metal and has excellent properties with regard to conductivity, workability, and strength. It has been used in various industries owing to its economic benefits. To improve upon the mechanical properties and processability by adding various alloying elements to aluminum, improving the corrosion resistance and heat resistance by electrochemically forming a porous anodic film having a thickness and hardness on the surface of the aluminum alloy is crucial. In this study, the aluminum 6061 alloy was controlled by an anodization process in a 0.3M oxalic acid electrolyte at room temperature to investigate the oxide film parameters such as porosity and thickness depending on the modulating applied voltage and time. The anodizing experiment was performed by increasing the time from 1 h to 9 h at 2-h intervals at applied voltages of 50 V and 60 V.

Keywords

References

  1. H. W. Ryu, Y. H. Kim, U. C. Chung, and W. S. Chung, Korean J. Mater. Res., 17, 244 (2007). [DOI: https://doi.org/10.3740/MRSK.2007.17.5.244]
  2. S. Moon, J. Korean Inst. Surf. Eng., 51, 1 (2018). [DOI: https://doi.org/10.5695/JKISE.2018.51.1.1]
  3. Y. Park, H. Ji, and C. Jeong, Korean J. Met. Mater., 58, 97 (2020). [DOI: https://doi.org/10.3365/KJMM.2020.58.2.97]
  4. S. Moon, C. I. Yang, and S. Na, J. Korean Inst. Surf. Eng., 47, 155 (2014). [DOI: https://doi.org/10.5695/JKISE.2014.47.4.155]
  5. H. Ji and C. Jeong, J. Korean Inst. Surf. Eng., 51, 372 (2018). [DOI: https://doi.org/10.5695/JKISE.2018.51.6.372]
  6. C. Jeong, Ph.D. Thesis, p. 30-52, Stevens Institute of Technology, Hoboken (2013).
  7. C. P. Ferreira, M. C. Goncalves, R. Caram, R. Bertazzoli, and C. A. Rodrigues, Appl. Surf. Sci., 285, 226 (2013). [DOI: https://doi.org/10.1016/j.apsusc.2013.08.041]
  8. H. Kim and J. Kim, J. Micromech. Microeng., 20, 045008 (2010). [DOI: https://doi.org/10.1088/0960-1317/20/4/045008]
  9. C. Jeong and C. H. Choi, ACS Appl. Mater. Interfaces, 4, 842 (2012). [DOI: https://doi.org/10.1021/am201514n]
  10. C. Jeong and H. Ji, Materials, 12, 3231 (2019). [DOI: https://doi.org/10.3390/ma12193231]
  11. H. Ji and C. Jeong, Corros. Sci. Technol., 18, 228 (2019). [DOI: https://doi.org/10.14773/cst.2019.18.6.228]
  12. E. Byon, S. Moon, S. B. Cho, C. Y. Jeong, Y. Jeong, and Y. T. Sul, Surf. Coat. Technol., 200, 1018 (2005). [DOI: https://doi.org/10.1016/j.surfcoat.2005.02.133]
  13. S. Moon, C. Jeong, E. Byon, and Y. Jeong, ECS Trans., 1, 151 (2006). [DOI: https://doi.org/10.1149/1.2215498]
  14. C. Jeong and C. H. Choi, J. Korean Inst. Surf. Eng., 50, 427 (2017). [DOI: https://doi.org/10.5695/JKISE.2017.50.6.427]
  15. C. Jeong, J. Microelectron. Packag. Soc., 26, 35 (2019). [DOI: https://doi.org/10.6117/kmeps.2019.26.1.0035]
  16. F. Zhang, L. Zhao, H. Chen, S, Xu, D. G. Evans, and X. Duan, Angew. Chem. Int. Ed., 47, 2466 (2008). [DOI: https://doi.org/10.1002/anie.200704694]
  17. J. A Davies, B. Domeij, J.P.S. Pringle, and F. Brown, J. Electrochem. Soc., 112, 675 (1965). [DOI: https://doi.org/10.1149/1.2423662]
  18. C. Jeong, J. Lee, K. Sheppard, and C. H. Choi, Langmuir, 31, 11040 (2015). [DOI: https://doi.org/10.1021/acs.langmuir.5b02392]
  19. S. H. Moon, S. M. Moon, and S. Lim, J. Korean Inst. Surf. Eng., 52, 203 (2019). [DOI: https://doi.org/10.5695/JKISE.2019.52.4.203]
  20. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, Nano Lett., 2, 677 (2002). [DOI: https://doi.org/10.1021/nl025537k]
  21. C. Jeong, Ph.D. Thesis, p. 2-5, Stevens Institute of Technology, Hoboken (2013).