DOI QR코드

DOI QR Code

Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor

  • Chuan, M.W. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Wong, K.L. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Rusli, S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia) ;
  • Tan, M.L.P. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
  • Received : 2020.07.21
  • Accepted : 2020.11.20
  • Published : 2021.01.25

Abstract

Silicene is an emerging two-dimensional (2D) semiconductor material which has been envisaged to be compatible with conventional silicon technology. This paper presents a theoretical study of uniformly doped silicene with aluminium (AlSi3) Field-Effect Transistor (FET) along with the benchmark of device performance metrics with other 2D materials. The simulations are carried out by employing nearest neighbour tight-binding approach and top-of-the-barrier ballistic nanotransistor model. Further investigations on the effects of the operating temperature and oxide thickness to the device performance metrics of AlSi3 FET are also discussed. The simulation results demonstrate that the proposed AlSi3 FET can achieve on-to-off current ratio up to the order of seven and subthreshold swing of 67.6 mV/dec within the ballistic performance limit at room temperature. The simulation results of AlSi3 FET are benchmarked with FETs based on other competitive 2D materials such as silicene, graphene, phosphorene and molybdenum disulphide.

Keywords

Acknowledgement

The authors acknowledge the Research Management Centre (RMC) of Universiti Teknologi Malaysia (UTM) for providing excellent support and a stimulating research environment. Mu Wen would like to convey his gratitude for the award of PhD Zamalah Scholarship from the School of Graduate Studies, UTM. Michael Tan would like to acknowledge the financial support from UTM Fundamental Research (UTMFR) Grant (Vote no.: Q.J130000.2551.21H51), which allowed the smooth progress of this research.

References

  1. Ahmadi, M.T., Ismail, R., Tan, M.L. and Arora, V.K. (2008), "The ultimate ballistic drift velocity in carbon nanotubes", J. Nanomater., 2008, 769250. https://doi.org/10.1155/2008/769250.
  2. Arora, V.K. (2015), Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles, CRC Press, New York, USA. https://doi.org/10.1201/b18131.
  3. Badaroglu, M. (2018), International Roadmap for Devices and Systems (IRDS), IEEE, USA. https://irds.ieee.org.
  4. Chen, J., Wang, X.F., Vasilopoulos, P., Chen, A.B. and Wu, J.C. (2014), "Single and multiple doping effects on charge transport in zigzag silicene nanoribbons", Chemphyschem, 15(13), 2701-2706. https://doi.org/10.1002/cphc.201402171.
  5. Chhowalla, M., Jena, D. and Zhang, H. (2016), "Two-dimensional semiconductors for transistors", Nat. Rev. Mater., 1(11), 16052. https://doi.org/10.1038/natrevmats.2016.52.
  6. Chuan, M.W., Wong, K.L., Hamzah, A., Riyadi, M.A., Alias, N.E. and Tan, M.L.P. (2019). "Electronic properties of silicene nanoribbons using tight-binding approach", Proceedings of the 2019 International Symposium on Electronics and Smart Devices (ISESD), Bali, Indonesia, October. https://doi.org/10.1109/ISESD.2019.8909598.
  7. Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2020a), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., Int. J., 9(2), 105-112. https://doi.org/10.12989/anr.2020.9.2.105.
  8. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020b), "2D honeycomb silicon: A review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.
  9. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020c), "Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure", Physica E Low Dimens. Syst. Nanostruct., 116, 113731. https://doi.org/10.1016/j.physe.2019.113731.
  10. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020d), "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlatt. Microstruct., 140, 106429. https://doi.org/10.1016/j.spmi.2020.106429.
  11. Ding, Y. and Ni, J. (2009), "Electronic structures of silicon nanoribbons", Appl. Phys. Lett., 95(8), 083115. https://doi.org/10.1063/1.3211968.
  12. Ding, Y. and Wang, Y. (2013), "Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties", J. Phys. Chem. C, 117(35), 18266-18278. https://doi.org/10.1021/jp407666m.
  13. Dong, Z. and Guo, J. (2017), "Assessment of 2-D transition metal dichalcogenide FETs at sub-5-nm gate length scale", IEEE Trans. Electron. Devices, 64(2), 622-628. https://doi.org/10.1109/TED.2016.2644719.
  14. Eshkalak, M.A., Faez, R. and Haji-Nasiri, S. (2015), "A novel graphene nanoribbon field effect transistor with two different gate insulators", Physica E Low Dimens. Syst. Nanostruct., 66, 133-139. https://doi.org/10.1016/j.physe.2014.10.021.
  15. Ghannadpour, S. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., Int. J., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311.
  16. Goswami, A. and Gawande, M.B. (2019), "Phosphorene: Current status, challenges and opportunities", Front. Chem. Sci. Eng., 2019, 1-14. https://doi.org/10.1007/s11705-018-1783-y.
  17. Harrison, W.A. (2004), Elementary Electronic Structure: Revised, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/5432.
  18. Hosseini, M. and Karami, H. (2018), "Strain effects on the DC performance of single-layer TMD-based double-gate field-effect transistors", J. Comput. Elec., 17(4), 1603-1607. https://doi.org/10.1007/s10825-018-1227-4.
  19. Hsu, H.C., Lu, Y.H., Su, T.L., Lin, W.C. and Fu, T.Y. (2018), "Single crystalline silicene consist of various superstructures using a flexible ultrathin Ag (111) template on Si (111)", Semicond. Sci. Technol., 33(7), 075004. https://doi.org/10.1088/1361-6641/aaad88.
  20. Izhnin, I.I., Kurbanov, K.R., Lozovoy, K.A., Kokhanenko, A.P., Dirko, V.V. and Voitsekhovskii, A.V. (2020), "Epitaxial fabrication of 2D materials of group IV elements", Appl. Nanosci., 10, 4375-4383. https://doi.org/10.1007/s13204-020-01372-4.
  21. Kazmierski, T.J., Zhou, D., Al-Hashimi, B.M. and Ashburn, P. (2009), "Numerically efficient modeling of CNT transistors with ballistic and nonballistic effects for circuit simulation", IEEE Trans, Nanotechnol., 9(1), 99-107. https://doi.org/10.1109/TNANO.2009.2017019.
  22. Lam, K.T., Dong, Z. and Guo, J. (2014), "Performance limits projection of black phosphorous field-effect transistors", IEEE Electron. Device Lett., 35(9), 963-965. https://doi.org/10.1109/LED.2014.2333368.
  23. Leong, C.H., Chuan, M.W., Wong, K.L., Najam, F., Yu, Y.S. and Tan, M.L.P. (2020), "Compact device modelling of interface trap charges with quantum capacitance in MoS2-based field-effect transistors", Semicond. Sci. Technol., 35(4), 045023. https://doi.org/10.1088/1361-6641/ab74f2.
  24. Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2018), "Performance analysis of one dimensional BC2N for nanoelectronics applications", Physica E Low Dimens. Syst. Nanostruct., 102, 33-38. https://doi.org/10.1016/j.physe.2018.04.005.
  25. Lima, M.P., Fazzio, A. and da Silva, A.J.R. (2018), "Silicene-Based FET for Logical Technology", IEEE Electron. Device Lett., 39(8), 1258-1261. https://doi.org/10.1109/LED.2018.2848640.
  26. Liu, C.C., Feng, W. and Yao, Y. (2011), "Quantum spin Hall effect in silicene and two-dimensional germanium", Phys. Rev. Lett., 107(7), 076802. https://doi.org/10.1103/PhysRevLett.107.076802.
  27. Lu, A.K.A., Pourtois, G., Luisier, M., Radu, I.P. and Houssa, M. (2017), "On the electrostatic control achieved in transistors based on multilayered MoS2: A first-principles study", J. Appl. Phys., 121(4), 044505. https://doi.org/10.1063/1.4974960.
  28. Lundstrom, M. and Jeong, C. (2013), Near-Equilibrium Transport: Fundamentals and Applications, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/7975.
  29. Lundstrom, M.S. and Antoniadis, D.A. (2014), "Compact models and the physics of nanoscale FETs", IEEE Trans. Electron. Devices, 61(2), 225-233. https://doi.org/10.1109/TED.2013.2283253.
  30. Md Arshad, M., Othman, N. and Hashim, U. (2015), "Fully depletion of advanced silicon on insulator MOSFETs", Crit. Rev. Solid State Mater. Sci., 40(3), 182-196. https://doi.org/10.1080/10408436.2014.978447.
  31. Ni, Z., Zhong, H., Jiang, X., Quhe, R., Luo, G., Wang, Y., Ye, M., Yang, J., Shi, J. and Lu, J. (2014), "Tunable band gap and doping type in silicene by surface adsorption: Towards tunneling transistors", Nanoscale, 6(13), 7609-7618. https://doi.org/10.1039/c4nr00028e.
  32. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M.I., Grigorieva, I., Dubonos, S. and Firsov, A.A. (2005), "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438(7065), 197. https://doi.org/10.1038/nature04233.
  33. Patel, N. and Choudhary, S. (2017), "Current saturation and kink effect in zero-bandgap double-gate silicene field-effect transistors", Superlatt. Microstruct., 110, 155-161. https://doi.org/10.1016/j.spmi.2017.08.049.
  34. Poljak, M. (2020), "Impact of width scaling and parasitic series resistance on the performance of silicene nanoribbon MOSFETs", IEEE Trans. Electron. Devices, 67(11), 4705-4708. https://doi.org/10.1109/TED.2020.3017465
  35. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011), "Single-layer MoS 2 transistors", Nat. Nanotechnol., 6(3), 147. https://doi.org/10.1038/nnano.2010.279.
  36. Rahman, A., Guo, J., Datta, S. and Lundstrom, M.S. (2003), "Theory of ballistic nanotransistors", IEEE Trans. Electron. Devices, 50(9), 1853-1864. https://doi.org/10.1109/TED.2003.815366.
  37. Saad, I., Tan, M.L., Hii, H., Ismail, R. and Arora, V.K. (2009), "Ballistic mobility and saturation velocity in low-dimensional nanostructures", Microelectron. J., 40(3), 540-542. https://doi.org/10.1016/j.mejo.2008.06.046.
  38. Sadeddine, S., Enriquez, H., Bendounan, A., Das, P.K., Vobornik, I., Kara, A., Mayne, A.J., Sirotti, F., Dujardin, G. and Oughaddou, H. (2017), "Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D silicon layer", Sci. Rep., 7, 44400. https://doi.org/10.1038/srep44400.
  39. Salimian, F. and Dideban, D. (2019), "Comparative study of nanoribbon field effect transistors based on silicene and graphene", Mater. Sci. Semicond. Process., 93, 92-98. https://doi.org/10.1016/j.mssp.2018.12.032.
  40. Sarebanha, B., Ahmadi, S. and Eslami, L. (2017), "Impact of phosphorus superlattices on charge and spin dependent transport properties of zigzag silicene nanoribbons", Physica E Low Dimens. Syst. Nanostruct., 89, 139-147. https://doi.org/10.1016/j.physe.2017.02.013.
  41. Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., Int. J., 8(4), 265-276. http://doi.org/10.12989/anr.2020.8.4.265.
  42. Si, N. and Niu, T. (2020), "Epitaxial growth of elemental 2D materials: What can we learn from the periodic table?", Nano Today, 30, 100805. https://doi.org/10.1016/j.nantod.2019.100805.
  43. Stepniak-Dybala, A. and Krawiec, M. (2019), "Formation of silicene on ultra-thin Pb (111) films", J. Phys. Chem. C, 123(27), 17019-17025. https://doi.org/10.1021/acs.jpcc.9b04343.
  44. Sun, M., Ren, Q., Wang, S., Yu, J. and Tang, W. (2016), "Electronic properties of Janus silicene: New direct band gap semiconductors", J. Phys. D Appl. Phys., 49(44), 445305. https://doi.org/10.1088/0022-3727/49/44/445305.
  45. Supriyo, D. (2017), Lessons From Nanoelectronics: A New Perspective On Transport - Part A: Basic Concepts, World Scientific, Singapore. https://doi.org/10.1142/10440
  46. Takeda, K. and Shiraishi, K. (1994), "Theoretical possibility of stage corrugation in Si and Ge analogs of graphite", Phys. Rev. B, 50(20), 14916. https://doi.org/10.1103/PhysRevB.50.14916.
  47. Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A. and Akinwande, D. (2015), "Silicene field-effect transistors operating at room temperature", Nat. Nanotechnol., 10(3), 227. https://doi.org/10.1038/NNANO.2014.325.
  48. Thriveni, G. and Ghosh, K. (2019), "Theoretical analysis and optimization of high-k dielectric layers for designing high-performance and low-power-dissipation nanoscale double-gate MOSFETs", J. Comput. Elec., 18(3), 924-940. https://doi.org/10.1007/s10825-019-01353-z.
  49. Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B. and Le Lay, G. (2012), "Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon", Phys. Rev. Lett., 108(15), 155501. https://doi.org/10.1103/PhysRevLett.108.155501.
  50. Wang, X., Zhao, L. and Liu, J. (2019), "Carbon nanotube/graphene composites as thermal interface materials for electronic devices", Fuller. Nanotub. Carbon Nanostruct., 27(12), 907-913. https://doi.org/10.1080/1536383X.2019.1660647.
  51. Wong, K.L., Chuan, M.W., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 207-219. http://doi.org/10.12989/anr.2019.7.3.209.
  52. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2020), "Performance metrics of current transport in pristine graphene nanoribbon field effect transistors using recursive non-equilibrium Green's function approach", Superlatt. Microstruct., 145, 106624. https://doi.org/10.1016/j.spmi.2020.106624
  53. Ye, P., Ernst, T. and Khare, M.V. (2019), "The last silicon transistor: Nanosheet devices could be the final evolutionary step for Moore's Law", IEEE Spectrum, 56(8), 30-35. https://doi.org/10.1109/MSPEC.2019.8784120.
  54. Zhao, J., Liu, H., Yu, Z., Quhe, R., Zhou, S., Wang, Y., Liu, C.C., Zhong, H., Han, N. and Lu, J. (2016), "Rise of silicene: A competitive 2D material", Prog. Mater. Sci., 83, 24-151. https://doi.org/10.1016/j.pmatsci.2016.04.001.