DOI QR코드

DOI QR Code

Application of sequence to sequence learning based LSTM model (LSTM-s2s) for forecasting dam inflow

Sequence to Sequence based LSTM (LSTM-s2s)모형을 이용한 댐유입량 예측에 대한 연구

  • Han, Heechan (Department of Civil and Environmental Engineering, Colorado State University) ;
  • Choi, Changhyun (Risk Management Office, KB Claims Survey and Adjusting) ;
  • Jung, Jaewon (Institute of Water Resources System, Inha University) ;
  • Kim, Hung Soo (Department of Civil Engineering, Inha University)
  • 한희찬 (콜로라도 주립 대학교 토목환경공학과) ;
  • 최창현 (KB손해사정 위험관리실) ;
  • 정재원 (인하대학교 수자원시스템연구소) ;
  • 김형수 (인하대학교 사회인프라공학과)
  • Received : 2020.12.07
  • Accepted : 2021.01.19
  • Published : 2021.03.31

Abstract

Forecasting dam inflow based on high reliability is required for efficient dam operation. In this study, deep learning technique, which is one of the data-driven methods and has been used in many fields of research, was manipulated to predict the dam inflow. The Long Short-Term Memory deep learning with Sequence-to-Sequence model (LSTM-s2s), which provides high performance in predicting time-series data, was applied for forecasting inflow of Soyang River dam. Various statistical metrics or evaluation indicators, including correlation coefficient (CC), Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS), and error in peak value (PE), were used to evaluate the predictive performance of the model. The result of this study presented that the LSTM-s2s model showed high accuracy in the prediction of dam inflow and also provided good performance for runoff event based runoff prediction. It was found that the deep learning based approach could be used for efficient dam operation for water resource management during wet and dry seasons.

효율적인 댐 운영을 위해서는 높은 신뢰도를 기반으로 하는 유입량 예측이 요구된다. 본 연구에서는 최근 다양한 분야에서 사용되고 있는 데이터 기반의 예측 방법 중 하나인 딥러닝을 댐 유입량 예측에 활용하였다. 그 중 시계열 자료 예측에 높은 성능을 보이는 Sequence-to-Sequence 구조기반의 Long Short-Term Memory 딥러닝 모형(LSTM-s2s)을 이용하여 소양강 댐의 유입량을 예측하였다. 모형의 예측 성능을 평가하기 위해 상관계수, Nash-Sutcliffe 효율계수, 평균편차비율, 그리고 첨두값 오차를 이용하였다. 그 결과, LSTM-s2s 모형은 댐 유입량 예측에 대한 높은 정확도를 보였으며, 단일 유량 수문곡선 기반의 예측 성능에서도 높은 신뢰도를 보였다. 이를 통해 홍수기와 이수기에 수자원 관리를 위한 효율적인 댐 운영에 딥러닝 모형의 적용 가능성을 확인할 수 있었다.

Keywords

References

  1. Abrahart, R., Kneale, P.E., and See, L.M. (2004). Neural networks for hydrological modeling. CRC Press, London, UK.
  2. Adeyemi, O., Grove, I., Peets, S., Domun, Y., and Norton, T. (2018). "Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling." Sensors, Vol. 18, No. 10, pp. 3408-3429. https://doi.org/10.3390/s18103408
  3. Assem, H., Ghariba, S., Makrai, G., Johnston, P., Gill, L., and Pilla, F. (2017). "Urban water flow and water level prediction based on deep learning." Joint European conference on machine learning and knowledge discovery in databases. Springer, Skopje, Macedonia, Vol. 3, pp. 317-329.
  4. Bae, Y., Kim, J., Wang, W., Yoo, Y., Jung, J., and Kim, H.S. (2019). "Monthly inflow forecasting of Soyang River dam using VARMA and machine learning models." Journal of Climate Research, Vol. 14, No. 3, pp. 183-198. (in Korean) https://doi.org/10.14383/cri.2019.14.3.183
  5. Bang, Y., and Kim, S. (2018). "Development of initial design-width formulas for small streams: Case study in Western Gangwon province." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 6, pp. 357-367. (in Korean) https://doi.org/10.9798/kosham.2018.18.6.357
  6. Bicknell, B.R., Imhoff, J.C., Kittle Jr, J.L., Donigian Jr, A.S., and Johanson, R.C. (1996). Hydrological simulation program-FORTRAN. User's manual for release 11. EPA, U.S.
  7. Bloschl, G., Hall, J., Viglione, A., Perdigao. R.A., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G.T., Bilibashi, A., Bohac, M., Bonacci, O., Borga, M., Canjevac, I., Castellarin, A., Chirico, G.B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gul, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T.R., Kohnova, S., Koskela, J.J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J.L., Sauquet, E., Sraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and Zivkovic, N. (2019). "Changing climate both increases and decreases European river floods." Nature, Vol. 573, No. 7772, pp. 108-111. https://doi.org/10.1038/s41586-019-1495-6
  8. Chen, L., Singh, V.P., Lu, W., Zhang, J., Zhou, J., and Guo, S. (2016). "Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation." Journal of Hydrology, Vol. 540, pp. 712-726. https://doi.org/10.1016/j.jhydrol.2016.06.015
  9. Chen, P.A., Chang, L.C., and Chang, F.J. (2013). "Reinforced recurrent neural networks for multi-step-ahead flood forecasts." Journal of Hydrology, Vol. 497, pp. 71-79. https://doi.org/10.1016/j.jhydrol.2013.05.038
  10. Cho, K., Van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). "On the properties of neural machine translation: Encoder-decoder approaches." arXiv preprint, arXiv:1409.1259v2 [cs.CL].
  11. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014b). "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint, arXiv:1406.1078v3 [cs.CL].
  12. Choi, C., Kim, J., Han, H., Han, D., and Kim, H.S. (2020). "Development of water level prediction models using machine learning in wetlands: A case study of Upo Wetland in South Korea." Water, Vol. 12, No. 1, pp. 93-110. https://doi.org/10.3390/w12010093
  13. Devia, G.K., Ganasri, B.P., and Dwarakish, G.S. (2015). "A review on hydrological models." Aquatic Procedia, Vol. 4, pp. 1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126
  14. Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., and Jiang, J. (2020). "Comparison of long short term memory networks and the hydrological model in runoff simulation." Water, Vol. 12, No. 1, pp. 175-189. https://doi.org/10.3390/w12010175
  15. Feng, D., Fang, K., and Shen, C. (2020). "Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scales." Water Resources Research, Vol. 56, No. 9, e2019WR026793.
  16. Gholami, V.C.K.W., Chau, K.W., Fadaee, F., Torkaman, J., and Ghaffari, A. (2015). "Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers." Journal of Hydrology, Vol. 529, pp. 1060-1069. https://doi.org/10.1016/j.jhydrol.2015.09.028
  17. Ghumman, A.R., Ghazaw, Y.M., Sohail, A.R., and Watanabe, K. (2011). "Runoff forecasting by artificial neural network and conventional model." Alexandria Engineering Journal, Vol. 50, No. 4, pp. 345-350. https://doi.org/10.1016/j.aej.2012.01.005
  18. Granata, F., Gargano, R., and De Marinis, G. (2016). "Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA's storm water management model." Water, Vol. 8, No. 3, pp. 69-81. https://doi.org/10.3390/w8030069
  19. Han, J., Lee, D., Kang, B., Chung, S., Jang, W., Lim, K., and Kim, J. (2017). "Potential impacts of future extreme storm events on streamflow and sediment in Soyang-dam watershed." Journal of Korean Society on Water Environment, Vol. 33, No. 2, pp. 160-169. (in Korean) https://doi.org/10.15681/KSWE.2017.33.2.160
  20. Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, pp. 1543-1558. https://doi.org/10.3390/w10111543
  21. Jeong, E., Cho, H., and Koo, B. (2018). "Analysis of the impact of droughts on river flows in an agricultural watershed using a semi-distributed watershed model STREAM." Journal of the Korean Society for Marine Environment & Energy, Vol. 21, No. 4, pp. 398-410. (in Korean) https://doi.org/10.7846/JKOSMEE.2018.21.4.398
  22. Jung, S.H., Lee, D.E., and Lee, K.S. (2018). "Prediction of river water level using deep-learning open library." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 1-11. (in Korean) https://doi.org/10.9798/KOSHAM.2018.18.1.1
  23. Kang, N.R., Noh, H.S., Lee, J.S., Lim, S.H., and Kim, H.S. (2013). "Runoff simulation of an urban drainage system using radar rainfall data." Journal of Wetlands Research, Vol. 15, No. 3, pp. 413-422. (in Korean) https://doi.org/10.17663/JWR.2013.15.3.413
  24. Kim, B.K., Kim, S.D., Lee, E.T., and Kim, H.S. (2007). "Methodology for estimating ranges of SWAT model parameters: Application to Imha Lake inflow and suspended sediments." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 6B, pp. 661-668. (in Korean)
  25. Kim, D., Kim, J., Kwak, J., Necesito, I.V., Kim, J., and Kim, H.S. (2020). "Development of water level prediction models using deep neural network in mountain wetlands." Journal of Wetlands Research, Vol. 22, No. 2, pp. 106-112. (in Korean) https://doi.org/10.17663/JWR.2020.22.2.106
  26. Kim, K.S. (2010). A study on the real time forecasting for monthly inflow Daecheong dam using hydrologic time series analyses. Master Thesis, Seokyeong University, pp. 32-54. (in Korean)
  27. Kim, Y., Seo, S., and Kim, Y. (2018). "Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds." Journal of Korea Water Resources Association, Vol. 51, No. 8, pp. 677-686. (in Korean) https://doi.org/10.3741/JKWRA.2018.51.8.677
  28. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M. (2018). "Rainfall-runoff modelling using long short-term memory (LSTM) networks." Hydrology and Earth System Sciences, Vol. 22, No. 11, pp. 6005-6022. https://doi.org/10.5194/hess-22-6005-2018
  29. Lee, G., Jung, S., and Lee, D. (2018). "Comparison of physics-based and data-driven models for streamflow simulation of the Mekong River." Journal of Korea Water Resources Association, Vol. 51, No. 6, pp. 503-514. https://doi.org/10.3741/JKWRA.2018.51.6.503
  30. Lee, K., Choi, C., Shin, D.H., and Kim, H.S. (2020). "Prediction of heavy rain damage using deep learning." Water, Vol. 12, No. 7, pp. 1942-1959. https://doi.org/10.3390/w12071942
  31. Legates, D.R., and McCabe, G.J. (1999). "Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation." Water Resources Research, Vol. 35, No. 1, pp. 233-241. https://doi.org/10.1029/1998WR900018
  32. Mok, J.Y., Choi, J.H., and Moon, Y.I. (2020). "Prediction of multipurpose dam inflow using deep learning." Journal of Korea Water Resources Association, Vol. 53, No. 2, pp. 97-105. (in Korean) https://doi.org/10.3741/JKWRA.2020.53.2.97
  33. Montanari, A., Rosso, R., and Taqqu, M.S. (1997). "Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation." Water Resources Research, Vol. 33, No. 5, pp. 1035-1044. https://doi.org/10.1029/97WR00043
  34. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R. D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  35. Mosavi, A., Ozturk, P., and Chau, K.W. (2018). "Flood prediction using machine learning models: Literature review." Water, Vol. 10, No. 11, p. 1536. https://doi.org/10.3390/w10111536
  36. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., and Williams, J.R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute, Temple, TX.
  37. Noh, H., Lee, J., Kang, N., Lee, D., Kim, H. S., and Kim, S. (2016). "Long-term simulation of daily streamflow using radar rainfall and the SWAT model: A case study of the Gamcheon basin of the Nakdong River, Korea." Advances in Meteorology, Vol. 2016, pp. 431-442.
  38. Palmer, M., and Ruhi, A. (2019). "Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration." Science, Vol. 365, No. 6459, eaaw2087. https://doi.org/10.1126/science.aaw2087
  39. Park, M.K., Yoon, Y.S., Lee, H.H., and Kim, J.H. (2018). "Application of recurrent neural network for inflow prediction into multi-purpose dam basin." Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1217-1227. (in Korean)
  40. Riad, S., Mania, J., Bouchaou, L., and Najjar, Y. (2004). "Predicting catchment flow in a semi-arid region via an artificial neural network technique." Hydrological Processes, Vol. 18, No. 13, pp. 2387-2393. https://doi.org/10.1002/hyp.1469
  41. Shoaib, M., Shamseldin, A.Y., Melville, B.W., and Khan, M.M. (2016). "A comparison between wavelet based static and dynamic neural network approaches for runoff prediction." Journal of Hydrology, Vol. 535, pp. 211-225. https://doi.org/10.1016/j.jhydrol.2016.01.076
  42. Sutskever, I., Vinyals, O., and Le, Q.V. (2014). "Sequence to sequence learning with neural networks." arXiv preprint, arXiv:1409.3215v3 [cs.CL].
  43. Tian, Y., Xu, Y.P., Yang, Z., Wang, G., and Zhu, Q. (2018). "Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting." Water, Vol. 10, No. 11, pp. 1655. https://doi.org/10.3390/w10111655
  44. Wilcox, B.P., Rawls, W.J., Brakensiek, D.L., and Ross Wight, J. (1990). "Predicting runoff from rangeland catchments: A comparison of two models." Water Resources Research, Vol. 26, No. 10, pp. 2401-2410. https://doi.org/10.1029/WR026i010p02401
  45. Xiang, Z., Yan, J., and Demir, I. (2020). "A rainfall-runoff model with LSTM-based sequence-to-sequence learning." Water Resources Research, Vol. 56, No. 1, e2019WR025326.
  46. Xu, J., Luo, W., and Huang, Y. (2019). "Dadu River runoff forecasting via Seq2Seq." Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science, Wuhan, China, pp. 494-498.
  47. Yan, J., Jin, J., Chen, F., Yu, G., Yin, H., and Wang, W. (2018). "Urban flash flood forecast using support vector machine and numerical simulation." Journal of Hydroinformatics, Vol. 20, No. 1, pp. 221-231. https://doi.org/10.2166/hydro.2017.175
  48. Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas." Journal of Hydrology, Vol. 561, pp. 918-929. https://doi.org/10.1016/j.jhydrol.2018.04.065
  49. Zhang, Q., Xiao, M., Singh, V.P., and Li, J. (2012). "Regionalization and spatial changing properties of droughts across the Pearl River basin, China." Journal of Hydrology, Vol. 472, pp. 355-366. https://doi.org/10.1016/j.jhydrol.2012.09.054