DOI QR코드

DOI QR Code

Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate

  • Received : 2021.06.08
  • Accepted : 2021.07.09
  • Published : 2021.10.25

Abstract

This paper presents a careful theoretical investigation into interfacial shear stresses in steel beam strengthened with prestressed carbon/glass hybrid laminated plate. A closed-form rigorous solution for interfacial shear stress in steel beams strengthened with bonded prestressed carbon/glass hybrid laminated plates and subjected to a uniformly distributed load, is developed using linear elastic theory and including the variation in fiber volume fraction of carbon/glass hybrid laminated. The results show that there exists a high concentration of shear stress at the ends of the laminate, which might result in premature failure of the strengthening scheme at these locations. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate and adhesive stiffness, the proportions and volume fraction of the fiber of carbon/glass hybrid laminated, the thickness of the laminate and the effect of prestressing where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member. This solution is intended for application to beams made of all kinds of materials bonded with a thin composite plate. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.
  2. Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083.
  3. Akbas Seref D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-34. http://doi.org/10.12989/sem.2018.67.4.337.
  4. Al-Furjan, M.S.., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021), "Nonpolynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228(1), 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  5. Amara, K., Antar, K. and Benyoucef, S. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  6. Ameur, M., Tounsi, A., Benyoucef, S., Bouiadjra, M.B. and Bedia, E.A. (2008), "Stress analysis of steel beams strengthened with a bonded hygrothermal aged composite plate", Int. J. Mech. Mater. Des., 5(2), 143-156. https://doi.org/10.1007/s10999-008-9090-2.
  7. Benachour, A., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  8. Benferhat, R., Hassaine Daouadji, T. and Abderezak, R. (2020a), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  9. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2020b),"Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265.
  10. Benferhat, R., Hassaine Daouadji, T. and Rabahi, A. (2021c), "Analysis and sizing of RC beams reinforced by external bonding of imperfect functionally graded plate", Adv. Mater. Res., 10(2), 77-98. http://doi.org/10.12989/amr.2021.10.2.077.
  11. Bensattalah, T., Daouadji, T.H. and Zidour, M. (2020b), "Influences the shape of the floor on the behavior of buildings under seismic effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, Vol1-Nano Technology and Advanced Materials, 26-42. https://doi.org/10.1007/978-3-030-43268-3_3.
  12. Bouakaz, K., Daouadji, T.H., Meftah, S.A., Ameur, M., Tounsi, A. and Bedia, E.A. (2014), "A numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50(4), 685-696. https://doi.org/10.1007/s11029-014-9435-x.
  13. Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  14. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  15. Das, O., Ozturk, H. and Gonenli, C. (2020), "Finite element vibration analysis of laminated composite parabolic thick plate frames", Steel Compos. Struct., 35(1), 43-59. http://doi.org/10.12989/scs.2020.35.1.043.
  16. David, H., Rodrigo, G., Carlos, S. and Dinar, C. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin Wall. Struct., 150, 106706. https://doi.org/10.1016/j.tws.2020.106706.
  17. enferhat, R., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  18. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupl. Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
  19. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Constr. Build. Mater., 249, 118745. http://doi.org/10.1016/j.conbuildmat.2020.118745.
  20. Hassaine Daouadji, T. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength Mater., 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  21. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057
  22. Hassaine Daouadji, T., Bensattalah, T., Rabahi, A. and Tounsi, A. (2021a), "New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.31.
  23. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Mainten., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233.
  24. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Adim, B. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  25. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coupl. Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161.
  26. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRPRC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
  27. He, X.J., Zhou, C.Y. and Wang, Y. (2019), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates", Adv. Struct. Eng., 23(2), 277-288. https://doi.org/10.1177/1369433219868933.
  28. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  29. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  30. Krour, B., Bernard, F. and Tounsi, A. (2014), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008.
  31. Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Struct., 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.
  32. Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. http://doi.org/10.12989/scs.2020.34.1.141.
  33. Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135.
  34. Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  35. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473.
  36. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021a), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  37. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021c), "Mechanical behavior of RC cantilever beams strengthened with FRP laminate plate", Adv. Comput. Des., 6(3), 169-190. http://doi.org/10.12989/acd.2021.6.3.169.
  38. Rabahi, A., Hassaine Daouadji, T., Benferhat, R. and Tounsi, A. (2021d), "New proposal for flexural strengthening of a continuous I-steel beam using FRP laminate under thermo-mechanical loading", Struct. Eng. Mech., 78(6), 703-714. http://doi.org/10.12989/sem.2021.78.6.703.
  39. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  40. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041.
  41. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. http://doi.org/10.12989/scs.2020.35.5.659.
  42. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0.
  43. Tayeb, B. and Daouadji, T.H (2020a), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133.
  44. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  45. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solid. Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  46. Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhesiv., 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  47. Zohra, A., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.