DOI QR코드

DOI QR Code

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
  • 투고 : 2021.08.18
  • 심사 : 2022.03.30
  • 발행 : 2022.03.25

초록

Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

키워드

참고문헌

  1. Arulanandam, R., Batenchuk, C., Varette, O., Zakaria, C., Garcia, V., Forbes, N.E. Cox, J. (2015), "Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing", Nat. Comm., 6(1), 1-14. https://doi.org/10.1038/ncomms7410.
  2. Asghar, S. Hussain M, and Naeem M. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J. Phys. E Low-Dimen. Syst. Nanostruct., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.
  3. Atarod, D., Eskandari-Sedighi, G., Pazhoohi, F., Karimian, S.M., Khajeloo, M., and Riazi, G.H. (2015), "Microtubule dynamicity is more important than stability in memory formation: An in vivo study", J. Mole. Neurosci., 56(2), 313-319. https://doi.org/10.1007/s12031-015-0535-4.
  4. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443.
  5. Canty, J.T., Tan, R., Kusakci, E., Fernandes, J. and Yildiz, A. (2021), "Structure and mechanics of dynein motors", Annual Rev. Biophys., 50, 549-574. https://doi.org/10.1146/annurev-biophys-111020-101511.
  6. Civalek, O ., Demir, C . and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298. https://doi.org/10.3390/mca15020289.
  7. Cottrill, R.A., McKinley, R.S. and Van Der Kraak, G. (2002), "An examination of utilizing external measures to identify sexually maturing female American eels, Anguilla rostrata, in the St. Lawrence River", Envir. Biol. Fish., 65(3), 271-287. http://doi.org/10.1002/mcf2.10011.
  8. Das, A., Hirwani, C.K., Panda, S.K., Topal, U. and Dede, T. (2018), "Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques", Steel Compos. Struct., 29(6), 749-758. https://doi.org/10.12989/scs.2018.29.6.749.
  9. de Almeida Engler, J., Van Poucke, K., Karimi, M., De Groodt, R., Gheysen, G., Engler, G. and Gheysen, G. (2004), "Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots", Plant J., 38(1), 12-26. https://doi.org/10.1111/j.1365-313x.2004.02019.x
  10. Dewangan, H.C., Thakur, M., Patel, B., Ramteke, P.M., Hirwani, C.K. and Panda, S.K. (2021), "Dynamic deflection responses of glass/epoxy hybrid composite structure filled with hollow-glass microbeads", Eur. Phys. J. Plus, 136(7), 722. https://doi.org/10.1140/epjp/s13360-021-01710-7.
  11. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-Dependent homogenization scheme", Adv. Nano Res., 7(2), 135. https://doi.org/10.12989/anr.2019.7.2.135.
  12. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039.
  13. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  14. Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.
  15. Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.
  16. Field, J.J., Kanakkanthara, A. and Miller, J.H. (2014), "Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function", Bioorgan. Medic. Chem., 22(18), 5050-5059. https://doi.org/10.1016/j.bmc.2014.02.035.
  17. Frankamp, B.L., Boal, A.K. and Rotello, V.M. (2002), "Controlled interparticle spacing through self-assembly of Au nanoparticles and poly (amidoamine) dendrimers", J. Am. Chem. Soc., 124(51), 15146-15147. https://doi.org/10.1021/ja0280426.
  18. Gao, Y. and Lei, F.M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Biochem. Biophys. Res. Comm., 387(3), 467-471. https://doi.org/10.1016/j.bbrc.2009.07.042.
  19. Gao, Y., Wang, J. and Gao, H. (2010), "Persistence length of microtubules based on a continuum anisotropic shell model", J. Comput. Theo. Nanosci., 7(7), 1227-1237. https://doi.org/10.1166/jctn.2010.1476.
  20. Gholami, D., Ghaffari, S.M., Shahverdi, A., Sharafi, M., Riazi, G., Fathi, R. and Hezavehei, M. (2018), "Proteomic analysis and microtubule dynamicity of human sperm in electromagnetic cryopreservation", J. Cellular Biochem., 119(11), 9483-9497. https://doi.org/10.1002/jcb.27265.
  21. Giannakakou, P., Gussio, R., Nogales, E., Downing, K.H., Zaharevitz, D., Bollbuck, B. and Fojo, T. (2000), "A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells", Proceedings of the National Academy of Sciences, 97(6), 2904-2909. https://doi.org/10.1073/pnas.040546297.
  22. Grishchuk, E.L., Molodtsov, M.I., Ataullakhanov, F.I. and McIntosh, J.R. (2005), "Force production by disassembling microtubules", Nat., 438(7066), 384-388. https://doi.org/10.1038/nature04132.
  23. Gu, B., Mai, Y.W. and Ru, C. (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3-4), 195-209. https://doi.org/10.1007/s00707-008-0121-8.
  24. Gu, B., Mai, Y.W. and Ru, C. (2009), "Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing", Acta Mechanica, 207(3), 195-209. http://doi.org/10.1007/s00707-008-0121-8.
  25. Havelka, D. and Cifra, M. (2009), "Calculation of the electromagnetic field around a microtubule", Acta Polytechnica, 49(2), 2009. http://doi.org/10.14311/1125.
  26. Havelka, D., Cifra, M., Kucera, O., Pokorny, J. and Vrba, J. (2011), "High-frequency electric field and radiation characteristics of cellular microtubule network", J. Theo. Biol., 286, 31-40. https://doi.org/10.1016/j.jtbi.2011.07.007.
  27. Heireche, H., Tounsi, A., Benhassaini, H., Benzair, A., Bendahmane, M. and Mokadem, S. (2010), "Nonlocal elasticity effect on vibration characteristics of protein microtubules", Phys. E Low-Dimen. Syst. Nanostr., 42(9), 2375-2379. http://doi.org/10.1016%2Fj.physe.2010.05.017. https://doi.org/10.1016%2Fj.physe.2010.05.017
  28. Hirwani, C.K. and Panda, S.K. (2020), "Nonlinear transient analysis of delaminated curved composite structure under blast/pulse load", Eng. Comput., 36(4), 1201-1214. https://doi.org/10.1108/ec-08-2018-0389
  29. Hirwani, C.K., Mishra, P.K. and Panda, S.K. (2021), "Nonlinear steady-state responses of weakly bonded composite shell structure under hygro-thermo-mechanical loading", Compos. Struct., 265, 113768. https://doi.org/10.1016/j.compstruct.2021.113768.
  30. Hirwani, C.K., Panda, S.K. and Mishra, P.K. (2021), "Influence of debonding on nonlinear deflection responses of curved composite panel structure under hygro-thermo-mechanical loading-macro-mechanical FE approach", Int. J. Non-Linear Mech., 128, 103636. https://doi.org/10.1016/j.ijnonlinmec.2020.103636.
  31. Howard, J. (2001), "Mechanics of motor proteins and the cytoskeleton", Appl. Mech. Rev., 55(2), B39. https://doi.org/10.1063/1.1472396.
  32. Howard, J. and Hyman, A.A. (2003), "Dynamics and mechanics of the microtubule plus end", Nat., 422(6933), 753-758. https://doi.org/10.1038/nature01600.
  33. Hussain M., Naeem M.N. and Tounsi A, (2020c), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Adv. Concrete Constr., 9(3), 301-312. https://doi.org/10.12989/acc.2020.9.3.301.
  34. Hussain M., Naeem M.N. and Tounsi A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Adv. Comput. Des. 5(4), 363-380. https://doi.org/10.12989/ACD.2020.5.4.363
  35. Hussain M., Naeem M.N. and Tounsi A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.
  36. Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  37. Hussain, M. and Naeem, M.N. (2018), "Effect of various edge conditions on free-vibration characteristics of isotropic square and rectangular plates", Adv. Eng. Test., 47.
  38. Hussain, M. and Naeem, M.N. (2018), "Vibrational behavior of single-walled carbon nanotubes based on donnell shell theory using wave propagation approach", Novel Nanomater. Synthesis Appl., 78-90.
  39. Hussain, M. and Naeem, M.N. (2019), "Vibration characteristics of single-walled carbon nanotubes based on nonlocal elasticity theory using wave propagation approach (WPA) including chirality", Perspect. Carbon Nanotube.. http://doi.org/10.5772/intechopen.85948.
  40. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  41. Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci. Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
  42. Hussain, M. and Naeem., M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  43. Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
  44. Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309.
  45. Hussain, M., Naeem, M.N., Shahzad A, He, M., Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320.
  46. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020a), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  47. Hussain, M., Naeem, M.N., Tounsi Abdelouahed, and Taj. M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  48. Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  49. Hussain, M., Shahzad, A., Naeem, M.N. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Comput. Fluid. Dyn. Basic Instrum. Appl. Sci., 333. https://doi.org/10.5772/intechopen.72172.
  50. Janson, M.E., de Dood, M.E. and Dogterom, M. (2003), "Dynamic instability of microtubules is regulated by force", J. Cell biol., 161(6), 1029-1034. https://doi.org/10.1083/jcb.200301147.
  51. Job, D., Valiron, O. and Oakley, B. (2003), "Microtubule nucleation", Current Opinion Cell Biol., 15(1), 111-117. https://doi.org/10.1016/s0955-0674(02)00003-0.
  52. Joglekar, A.P., Bloom, K.S. and Salmon, E. (2010), "Mechanisms of force generation by end-on kinetochore-microtubule attachments", Current Opinion Cell Biol., 22(1), 57-67 https://doi.org/10.1016/j.ceb.2009.12.010.
  53. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. and Jermiin, L.S. (2017), "ModelFinder: Fast model selection for accurate phylogenetic estimates", Nat. Method., 14(6), 587-589. https://doi.org/10.1038/nmeth.4285.
  54. Katariya, P.V., Panda, S.K. and Mehar, K. (2021), "Theoretical modelling and experimental verification of modal responses of skewed laminated sandwich structure with epoxy-filled softcore", Eng. Struct., 228, 111509. https://doi.org/10.1016/j.engstruct.2020.111509.
  55. Kis, A., Kasas, S., Babic, B., Kulik, A., Benoit, W., Briggs, G. and Forro, L. (2002), "Nanomechanics of microtubules", Phys. Rev. Lett., 89(24), 248101. https://doi.org/10.1103/PhysRevLett.89.248101.
  56. Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
  57. Ku, N.O., Zhou, X., Toivola, D.M. and Omary, M.B. (1999), "The cytoskeleton of digestive epithelia in health and disease", Am. J. Phys. Gastrointestinal Liver Phys., 277(6), G1108-G1137. https://doi.org/10.1152/ajpgi.1999.277.6.g1108.
  58. Kucera, O. (2012), "Cellular nanoelectromechanics". https://doi.org/10.3389/fmech.2020.00037.
  59. Lasser, M., Tiber, J. and Lowery, L.A. (2018), "The role of the microtubule cytoskeleton in neurodevelopmental disorders", Front. Cellular Neurosci., 12, 165. https://doi.org/10.3389/fncel.2018.00165.
  60. Li, S., Wang, C. and Nithiarasu, P. (2017), "Three-dimensional transverse vibration of microtubules", J. Appl. Phys., 121(23), 234301. https://doi.org/10.1063/1.4986630.
  61. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
  62. Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
  63. Milner, B., Squire, L.R. and Kandel, E.R. (1998), "Cognitive neuroscience and the study of memory", Neuron, 20(3), 445-468. https://doi.org/10.1016/s0896-6273(00)80987-3.
  64. Molodtsov, M.I., Ermakova, E.A., Shnol, E.E., Grishchuk, E.L., McIntosh, J.R. and Ataullakhanov, F.I. (2005), "A molecular-mechanical model of the microtubule", Biophys. J., 88(5), 3167-3179. https://doi.org/10.1529/biophysj.104.051789.
  65. Nogales, E., Whittaker, M., Milligan, R.A. and Downing, K.H. (1999), "High-resolution model of the microtubule", Cell, 96(1), 79-88. https://doi.org/10.1016/s0092-8674(00)80961-7.
  66. Ouakad, H.M. and Sedighi, H.M. (2016), "Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators", Int. J. Non-Linear Mech., 87, 97-108. https://doi.org/10.1016/j.ijnonlinmec.2016.09.009.
  67. Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
  68. Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.
  69. Panda and Singh (2010b), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.
  70. Panda, S.K. and Singh, B.N. (2010a), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1.
  71. Pokorny, J. and Wu, T.M. (1998), Biophysical Aspects of Coherence and Biological Order, Springer.
  72. Pokorny, J., Vedruccio, C., Cifra, M. and Kucera, O. (2011), "Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules", Eur. Biophys. J., 40(6), 747-759. http://doi.org/10.1007/s00249-011-0688-1.
  73. Prota, A.E., Bargsten, K., Zurwerra, D., Field, J.J., Diaz, J.F., Altmann, K.H. and Steinmetz, M.O. (2013), "Molecular mechanism of action of microtubule-stabilizing anticancer agents", Sci., 339(6119), 587-590. https://doi.org/10.1126/science.1230582.
  74. Proteggente, A.R., Pannala, A.S., Paganga, G., Buren, L.V., Wagner, E., Wiseman, S. and Rice-Evans, C.A. (2002), "The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition", Free Radical Res., 36(2), 217-233. https://doi.org/10.1080/10715760290006484.
  75. Rysaeva, L.K., Korznikova, E.A., Murzaev, R.T., Abdullina, D. U., Kudreyko, A.A., Baimova, J.A. and Dmitriev, S.V. (2020), "Elastic damper based on the carbon nanotube bundle", Facta Universitatis Ser. Mech. Eng., 18(1), 1-12. https://doi.org/10.22190/FUME200128011R.
  76. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  77. Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/epjp/s13360-021-01632-4.
  78. Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.
  79. Safaei, B. and Fattahi, A.M. (2017), "Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models", Mech., 23(5), 678-687. https://doi.org/10.5755/j01.mech.23.5.14883.
  80. Safaei, B., Fattahi, A.M. and Chu, F. (2018), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Tech., 24(6), 2663-2671. https://doi.org/10.1007/s00542-017-3651-y.
  81. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  82. Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.
  83. Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2021), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., 23(3), 884-905. https://doi.org/10.1177/1099636219848282.
  84. Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mole. Graph. Model., 65, 43-60. https://doi.org/10.1016/j.jmgm.2016.02.001.
  85. Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1063/1.5086216.
  86. Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Tech., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
  87. Shah, M., Geddes, J., McLaughlin, B. and Gilbody, H. (1998), "New low-energy measurements and calculation of ionization in collisions", J. Phys. B Atomic, Mole. Optical Phys., 31(19), L757. http://doi.org/10.1088/0953-4075/39/8/019.
  88. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337.
  89. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: A higher-order FEM-BEM approach", Int. J. Mech. Mater. Des., 15(2), 271-289. https://doi.org/10.1007/s10999-018-9426-5.
  90. Shen, H.S. (2010), "Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium", Biomech. Model. Mechanobiol., 9(3), 345-357. https://doi.org/10.1007/s10237-009-0180-3.
  91. Singh, S., Krishnaswamy, J.A. and Melnik, R. (2020), "Biological cells and coupled electro-mechanical effects: The role of organelles, microtubules, and nonlocal contributions", J. Mech. Behav. Biomed. Mater., 110, 103859. https://doi.org/10.1016/j.jmbbm.2020.103859.
  92. Sirajuddin, M., Rice, L.M. and Vale, R.D. (2014), "Regulation of microtubule motors by tubulin isotypes and post-translational modifications", Nat. Cell Biol., 16(4), 335-344. https://doi.org/10.1038/ncb2920.
  93. Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.
  94. Sirenko, Y.M., Stroscio, M.A. and Kim, K. (1996), "Elastic vibrations of microtubules in a fluid", Phys. Rev. E, 53(1), 1003. https://doi.org/10.1103/PhysRevE.53.1003.
  95. Steinberg, G., Schuster, M., Theisen, U., Kilaru, S., Forge, A. and Martin-Urdiroz, M. (2012), "Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport", J. Cell Biol., 198(3), 343-355. https://doi.org/10.1083/jcb.201201087.
  96. Taj, M. and Zhang, J.Q. (2011), "Buckling of embedded microtubules in elastic medium", Appl. Math. Mech., 32(3), 293-300. https://doi.org/10.1007/s10483-011-1415-x.
  97. Taj, M., Hussain, M., Afsar, M.A., Safeer, M., Ahmad, M., Naeem, M.N. and Tounsi, A. (2020), "Effects of elastic medium on buckling of microtubules due to bending and torsion", Adv Concrete Constr., 9(5), 491-501. https://doi.org/10.12989/acc.2020.9.5.491.
  98. Taj, M., Khadimallah, M.A., Hussain, M., Fareed, K., Safeer, M., Khedher, K.M. and Al Qahtani, A. (2021), "Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis", Adv. Concrete Constr., 11(3), 255-260. https://doi.org/10.12989/acc.2021.11.3.255.
  99. Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Al Naim, A.F. and Ahmad, M. (2021), "Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments", Adv. Concrete Constr., 11(1), 81-88. http://doi.org/10.12989/acc.2021.11.1.081.
  100. Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Rashid, Y. and Ponnore, J. (2021), "Instability analysis of microfilaments with and without surface effects using Euler theory", Adv. Nano Res., 10(6), 509-516. https://doi.org/10.12989/anr.2021.10.6.509.
  101. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  102. Taj, M.S. and Muhammad, S. (2019), "Vibrational analysis of microtubules embedded within viscoelastic medium using orthotropic Kelvin like model", Sains Malaysiana, 48(12), 2841-2847. http://doi.org/10.17576/jsm-2019-4812-25.
  103. Tsiatas, G.C., Tsiptsis, I.N. and Siokas, A.G. (2020), "Nonlinear buckling and post-buckling of shape memory alloy shallow arches", J. Appl. Comput. Mech., 6(3), 665-683. http://doi.org/10.22055/JACM.2019.31795.1918.
  104. Tuszynski, J.A., Brown, J.A. and Hawrylak, P. (1998), "Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible?", Philos. Transac. Royal Soc. London Ser. A Math. Phys. Eng. Sci., 356(1743), 1897-1926. https://doi.org/10.1098/rsta.1998.0255.
  105. Tuszynski, J.A., Priel, A., Brown, J.A., Cantiello, H.F. and Dixon, J.M. (2018), Electronic and Ionic Conductivities of Microtubules and Actin Filaments, Their Consequences for Cell Signaling and Applications to Bioelectronics, CRC Press.
  106. Vogl, A., Linck, R. and Dym, M. (1983), "Colchicine-induced changes in the cytoskeleton of the golden-mantled ground squirrel (Spermophilus lateralis) Sertoli cells", Am. J. Anatom., 168(1), 99-108. https://doi.org/10.1002/aja.1001680110.
  107. Wang, C., Ru, C. and Mioduchowski, A. (2006), "Vibration of microtubules as orthotropic elastic shells", Phys. E Low-Dimen. Syst. Nanostruct., 35(1), 48-56. https://doi.org/10.1016/j.physe.2006.05.008.
  108. Xue, J.Z., Woo, E.M., Postow, L., Chait, B.T. and Funabiki, H. (2013), "Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly", Develop. Cell, 27(1), 47-59. https://doi.org/10.1016/j.devcel.2013.08.002.
  109. Yi, L., Chang, T. and Ru, C. (2008), "Buckling of microtubules under bending and torsion", J. Appl. Phys., 103(10), 103516. https://doi.org/10.1063/1.2930882.
  110. Yi, L., Chang, T. and Ru, C. (2008), "Buckling of microtubules under bending and torsion", J. Appl. Phys., 103(10), 103516. https://doi.org/10.1063/1.2930882.
  111. Zhang, Y., Li, N., Caron, C., Matthias, G., Hess, D., Khochbin, S. and Matthias, P. (2003), "HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo", EMBO J., 22(5), 1168-1179. https://doi.org/10.1093/emboj/cdg115.