DOI QR코드

DOI QR Code

Fuzzy neural network controller of interconnected method for civil structures

  • Chen, Z.Y. (School of Science, Guangdong University of Petrochemical Technology) ;
  • Meng, Yahui (School of Science, Guangdong University of Petrochemical Technology) ;
  • Wang, Ruei-yuan (School of Science, Guangdong University of Petrochemical Technology) ;
  • Chen, Timothy (California Institute of Technology)
  • Received : 2021.09.25
  • Accepted : 2022.05.04
  • Published : 2022.05.25

Abstract

Recently, an increasing number of cutting-edged studies have shown that designing a smart active control for real-time implementation requires piles of hard-work criteria in the design process, including performance controllers to reduce the tracking errors and tolerance to external interference and measure system disturbed perturbations. This article proposes an effective artificial-intelligence method using these rigorous criteria, which can be translated into general control plants for the management of civil engineering installations. To facilitate the calculation, an efficient solution process based on linear matrix (LMI) inequality has been introduced to verify the relevance of the proposed method, and extensive simulators have been carried out for the numerical constructive model in the seismic stimulation of the active rigidity. Additionally, a fuzzy model of the neural network based system (NN) is developed using an interconnected method for LDI (linear differential) representation determined for arbitrary dynamics. This expression is constructed with a nonlinear sector which converts the nonlinear model into a multiple linear deformation of the linear model and a new state sufficient to guarantee the asymptomatic stability of the Lyapunov function of the linear matrix inequality. In the control design, we incorporated H Infinity optimized development algorithm and performance analysis stability. Finally, there is a numerical practical example with simulations to show the results. The implication results in the RMS response with as well as without tuned mass damper (TMD) of the benchmark building under the external excitation, the El-Centro Earthquake, in which it also showed the simulation using evolved bat algorithmic LMI fuzzy controllers in term of RMS in acceleration and displacement of the building.

Keywords

Acknowledgement

The authors are grateful for the research grants given to Ruei-Yuan Wang from GDUPT talent introduction, Peoples R China under Grant No. 702-519208, the Projects of Talents Recruitment of GDUPT (NO. 2019rc098), and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China, RY Wang from the Projects of Talents Recruitment of GDUPT (NO. 2019rc098), and Guangdong Provincial Key Lab. of Petrochemical Equipment and Fault Diagnosis, School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China as well as to the anonymous reviewers for constructive suggestions.

References

  1. Adam, T.J. and Chen, C. (2010), "Application of data mining to the spatial heterogeneity of foreclosed mortgages", Exp. Syst. Appl., 37, 993-997. https://doi.org/10.1016/j.eswa.2009.05.076.
  2. Adam, T.J. and Horst, P. (2006), "Dynamic fuzzy wavelet neural network model for structural system identification", J. Struct. Eng., ASCE, 132(1), 102-111. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102).
  3. Adam, T.J., Yang, H.P. and Chen, C. (2008), "A mathematical tool for inference in logistic regression with small-sized data sets: a practical application on ISW-ridge relationships", Math. Prob. Eng., 2008, Article ID 186372. https://doi.org/10.1155/2008/186372.
  4. Adeli, H. and Jiang, X.M. (2015), "Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies", Compos. Sci. Technol., 106, 93-99. https://doi.org/10.1016/j.compscitech.2014.10.020.
  5. Antonio, C.A.C., Chen, C. and Jiang, X.M. (2008), "GA-based fuzzy sliding mode controller for nonlinear systems", Math. Prob. Eng., 2008, Article ID 325859. https://doi.org/10.1155/2008/325859.
  6. Antonio, C.A.C., Chen, C. and Jiang, X.M. (2009), "A novel stability condition and its application to GA-based fuzzy control for nonlinear systems with uncertainty", J. Marine Sci. Technol., 17, 293-299.
  7. Antonio, C.A.C., Chen, C. and Jiang, X.M. (2009), "GA-based modified adaptive fuzzy sliding mode controller for nonlinear systems", Exp. Syst. Appl., 36, 5872-5879. https://doi.org/10.1016/j.eswa.2008.07.003.
  8. Antonio, C.A.C., Chen, C., Jiang, X.M. and Lo, D.C. (2011), "GA-based decoupled adaptive FSMC for nonlinear systems by a singular perturbation scheme", Neur. Comput. Appl., 20(4), 517-526. https://doi.org/10.1007/s00521-011-0540-7.
  9. Backe, D., Balle, F. and Eifler, D. (2014), "Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods", Appl. Mech. Rev., 66(6), 060803. https://doi.org/10.1115/1.4027647.
  10. Bak, B.L.V., Sarrado, C., Turon, A. and Costa, J. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  11. Bedirhanoglu, I. (1999), "Design and manufacturing considerations for ply drops in composite structures", Compos. Part B, 30, 523-534. https://doi.org/10.1016/S1359-8368(98)00043-2.
  12. Carrella, A. and Ewins, D.J. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  13. Chawla, K.K. (2011), "Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions", Mech. Syst. Signal Pr., 25(3), 1011-1027. https://doi.org/10.1016/j.ymssp.2010.09.011.
  14. Chawla, K.K. (2012), Fatigue and Creep, 3rd Edition, Springer, New York.
  15. Chen, C. (2011), "Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method", Neur. Comput. Appl., 20, 527-534. https://doi.org/10.1007/s00521-011-0576-8.
  16. Chen, C. (2011), "Stability analysis and robustness design of nonlinear systems: An NN-based approach", Appl. Soft Comput., 11, 2735-2742. https://doi.org/10.1016/j.asoc.2010.11.004.
  17. Chen, C., Chen, P. and Jiang XM. (2011), "Stabilization of adaptive neural network controllers for nonlinear structural systems using a singular perturbation approach", J. Vib. Control, 17, 1241-1252. https://doi.org/10.1177/1077546309352827.
  18. Chen, C.W. (2010), "Modeling and fuzzy PDC control and its application to an oscillatory TLP structure", Math. Prob. Eng., 2010, Article ID 120403. https://doi.org/10.1155/2010/120403.
  19. Chen, C.W. (2011), "Characterisation of a resonant bending fatigue test setup for pipes", Sustain. Constr. Des., 1, 424-431.
  20. Chen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  21. Chen, C.W., Chiang, W.L., Tsai, C.H., Chen, C.Y. and Wang, M.H. (2006), "Fuzzy Lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intel. Tool., 15(02), 163-171. https://doi.org/10.1142/S0218213006002618.
  22. Chen, C.W., Chiang, W.L., Yeh, K., Chen, Z.Y. and Lu, L.T. (2002), "A stability criterion of time-delay fuzzy systems", J. Marine Sci. Technol., 10, 33-35. https://doi.org/10.51400/2709-6998.2298.
  23. Chen, C.W., Yeh, K., Chiang, W.L., Chen, C.Y. and Wu, D.J. (2007). "Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model", J. Vib. Control, 13(11), 1519-1534. https://doi.org/10.1177/1077546307073690.
  24. Chen, C.Y., Hsu, J.R.C. and Chen, C.W. (2005), "Fuzzy logic derivation of neural network models with time delays in subsystems", Int. J. Artif. Intellig. Tool., 14, 967-974. https://doi.org/10.1142/S021821300500248X.
  25. Chen, C.Y., Hsu, J.R.C., Chen, C.W. and Cheng, M.H. (2006), "Numerical model of an internal solitary wave evolution on impermeable variable seabed in a stratified two-layer fluid system", China Ocean Eng., 20, 303-313. https://doi.org/10.3321/j.issn:0890-5487.2006.02.010
  26. Chen, C.Y., Shen, C.W., Chen, C.W., Liu, K.F.R. and Jeng, M.J. (2009), "A stability criterion for time-delay tension leg platform systems subjected to external force", China Ocean Eng., 23, 49-57.
  27. Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P., ... & He, X. (2021), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Scientif. Report., 11(1), 1-11. https://doi.org/10.1038/s41598-021-83376-w.
  28. Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F.P., ... & He, X.Y. (2020), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Scientif. Report., 11(1), 1-9. https://doi.org/10.1038/s41598-021-88146-2.
  29. Chen, Z., Tang, J., Zhang, X.Y., So, D.K.C., Jin, S. and Wong, K.K. (2022), "Hybrid evolutionary-based sparse channel estimation for IRS-assisted mmWave MIMO systems", IEEE Tran. Wireless Commun., 21(3), 1586-1601. https://doi.org/10.1109/TWC.2021.3105405.
  30. Chiang, W.L., Chen, C.W., Yeh, K., Liu, M.Y. and Chen, Z.Y. (2002), "A new approach to stability analysis for nonlinear time-delay systems", Int. J. Fuzzy Syst., 4(2), 735-738.
  31. Chiang, W.L., Chen, T.W., Liu, M.Y. and Hsu, C.J. (2001), "Application and robust H control of PDC fuzzy controller for nonlinear systems with external disturbance", J. Marine Sci. Technol., 9(2), 84-90. https://doi.org/10.51400/2709-6998.2438.
  32. Claeys, J. and Van Wittenberghe, J. (2014), "Alliance for sustainable energy, LLC, assignee. Wind turbine blade testing system using base excitation", United States Patent US 8, 677, 827.
  33. Di Maio, D. and Magi, F. (2015), "Development of testing methods for endurance trials of composites components", J. Compos. Mater., 49(24), 2977-2991. https://doi.org/10.1177/0021998314558497.
  34. Di Maio, D. and Magi, F. (2016), "Numerical simulation of tuned liquid tank-structure systems through sigma-transformation based fluid-structure coupled solver", Wind Struct., 23(5), 421-447. https://doi.org/10.12989/was.2016.23.5.421.
  35. Eswaran, M. and Reddy, G.R. (1984), Modal Testing: Theory and Practice, Research Studies Press, Letchworth.
  36. Ewins, D.J. (2009), "The study of resonance fatigue testing of test beams made of composite material", Proceedings of PACAM XI.
  37. Harris, B. (2003), Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics, Woodhead Publishing, Cambridge.
  38. Hosia, F., Chen, C. and Tsai, K. (2005), "Stability conditions of fuzzy systems and its application to structural and mechanical systems", Adv. Eng. Softw., 37, 624-629. https://doi.org/10.1016/j.advengsoft.2005.12.002.
  39. Hosia, F., Chen, C., Wu, Y. and Jiang, X.M. (2005), "Fuzzy controllers for nonlinear interconnected TMD systems with external force", J. Chin. Inst. Eng., 28(1), 175-181. https://doi.org/10.1080/02533839.2005.9670984.
  40. Hosia, F., Hwang, J., Chen, C. and Tsai, Z. (2005), "Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control", IEEE Trans. Fuzzy Syst., 13, 152-163. https://doi.org/10.1109/TFUZZ.2004.836067.
  41. Hosia, F., Hwang, J., Wang, M., Chen, C., Chen, C., Yu, S., Yang, H.P. and Adam, TJ. (2006), "A new viewpoint of S-curve regression model and its application to construction management", Int. J. Artif. Intel. Tool, 15, 131-142. https://doi.org/10.1142/S021821300600259X.
  42. Hosia, F., Jiang, X.M. and Chen, C. (2004), "Stability analysis of T-S fuzzy models for nonlinear multiple time-delay interconnected systems", Math. Comput. Simul., 66, 523-537. https://doi.org/10.1016/j.matcom.2004.04.001.
  43. Hosia, F., Jiang, X.M., Chen, C., Xu, S. and Wu, S. (2005), "Application and robustness design of fuzzy controller for resonant and chaotic systems with external disturbance", Int. J. Uncertain. Fuzz. Knowled. Bas. Syst., 13(3), 281-295. https://doi.org/10.1142/S0218488505003461.
  44. Hosia, F., Jiang, X.M., Xu, S. and Wu, S. (2003), "Application and fuzzy H∞ control via T-S fuzzy models for nonlinear time-delay systems", Int. J. Artif. Intel. Tool., 12(2), 117-137. https://doi.org/10.1142/S0218213003001174.
  45. Hosia, F., Jiang, X.M., Xu, S. and Wu, S. (2005), "Fuzzy control for nonlinear systems via neural-network-based approach", Int. J. Comput. Meth. Eng. Sci. Mech., 6, 145-152. https://doi.org/10.1080/15502280590923612.
  46. Hsiao, F.H., Chen, C.W., Liang, Y.W., Xu, S.D. and Chiang, W.L. (2005), "TS fuzzy controllers for nonlinear interconnected systems with multiple time delays", IEEE Trans. Circuit. Syst. I: Regular Paper., 52(9), 1883-1893. https://doi.org/10.1109/TCSI.2005.852492.
  47. Huang, H., Guo, M., Zhang, W. and Huang, M. (2022), "Seismic behavior of strengthened rc columns under combined loadings", J. Bridge Eng., 27(6), 05022005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
  48. Jiang XM., Chen, C., Lin, C., Tsai, C., Chen, C. and Yeh, K. (2007), "A novel delay-dependent criterion for time-delay T-S fuzzy systems using fuzzy Lyapunov method", Int. J. Artif. Intel. Tool., 16, 545-552. https://doi.org/10.1142/S0218213007003400.
  49. Jiang, X.M., Chen, C. and Hosia, F. (2004), "Stability analysis of nonlinear interconnected systems via T-S fuzzy models", Int. J. Comput. Intel. Appl., 4, 41-55. https://doi.org/10.1142/S1469026804001033.
  50. Jiang, X.M., Chen, C. and Wu, D. (2007), "Modeling, H∞ control and stability analysis for structural systems using Takagi-Sugeno fuzzy model", J. Vib. Control, 13, 1519-1534. https://doi.org/10.1177/1077546307073690.
  51. Jiang, X.M., Tsai, C., Chen, C. and Wang, M. (2007), "Fuzzy Lyapunov method for stability conditions of nonlinear systems", Int. J. Artif. Intel. Tool., 15, 163-172. https://doi.org/10.1142/S0218213006002618.
  52. Jiang, X.M., Yeh, K., Chen, C. and Chen, C. (2007), "Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method", Appl. Math. Comput., 205, 568-577. https://doi.org/10.1016/j.amc.2008.05.104.
  53. Jiang, Y. and Li, X. (2021), "Broadband cancellation method in an adaptive co-site interference cancellation system", Int. J. Electron., 1-21. https://doi.org/10.1080/00207217.2021.1941295.
  54. Just-Agosto, F., Peralta, A., Shafiq, B. and Serrano, D. (2009), "A vibration technique to obtain fatigue", ICCM17 Proceedings, Edinburgh, UK.
  55. Just-Agosto, F., Peralta, A., Shafiq, B. and Serrano, D. (2012), "Self-heating of polymeric laminated composite plates under the resonant vibrations: Theoretical and experimental study", Polym. Compos., 33, 138-146. https://doi.org/10.1002/pc.22134.
  56. Katunin, A. and Fidali, M. (1954), "Fatigue Failure under resonant vibration conditions", Technical Report, Wright Air Development Center.
  57. Lazan, B.J. (1989), "Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites", J. Compos. Mater., 23(7), 695-713. https://doi.org/10.1177/002199838902300704.
  58. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H. and Guibas, L. (2017), "GRASS: Generative recursive autoencoders for shape structures", ACM Trans. Graphic., 36(4), 1-14. https://doi.org/10.1145/3072959.3073637
  59. Lim, S.G. and Hong, C.S. (2001), "Nonlinear vibrations of a delaminated beam", J. Vib. Control, 7(6), 803-831. https://doi.org/10.1177/107754630100700603.
  60. Lin, C., Wang, J.F., Chen, C., Chen, C. and Yen, C.V. (2009), "Improving the generalization performance of RBF neural networks using a linear regression technique", Exp. Syst. Appl., 36, 12049-12053. https://doi.org/10.1016/j.eswa.2009.03.012.
  61. Lin, J., Chen, C. and Lee, W. (2010), "Modeling and fuzzy PDC control and its application to an oscillatory TLP structure", Math. Prob. Eng., 2010, Article ID 120403. https://doi.org/10.1155/2010/120403
  62. Lin, J., Chen, C., Lee, W. and Chen, C. (2010), "Fuzzy control for an oceanic structure: A case study in time-delay TLP system", J. Vib. Control, 16, 147-160. https://doi.org/10.1177/1077546309339424.
  63. Lin, J., Chen, C., Shen, C. and Cheng, M. (2010), "Application of fuzzy-model-based control to nonlinear structural systems with time delay: An LMI method", J. Vib. Control, 16, 1651-1672. https://doi.org/10.1177/1077546309104185.
  64. Lin, J., Shen, C., Chen, C. and Cheng, M. (2010), "Stability analysis of an oceanic structure using the Lyapunov method", Eng. Comput., 27, 186-204. https://doi.org/10.1108/02644401011022364.
  65. Lin, M., Chen, C., Wang, Q., Cao, Y., Shih, J., Lee, Y., Chen, C. and Wang, S. (2009), "Fuzzy model-based assessment and monitoring of desertification using MODIS satellite imagery", Eng. Comput., 26, 745-760. https://doi.org/10.1108/02644400910985152.
  66. Lin, M.L. and Chen, C.W. (2010), "Application of fuzzy models for the monitoring of ecologically sensitive ecosystems in a dynamic semiarid landscape from satellite imagery", Eng. Comput., 27, 5-19. https://doi.org/10.1108/02644401011008504.
  67. Liu, H., Shi, Z., Li, J., Liu, C., Meng, X., Du, Y. and Chen, J. (2021), "Detection of road cavities in urban cities by 3D ground-penetrating radar", Geophysics, 86(3), A25-A33. https://doi.org/10.1190/geo2020-0384.1.
  68. Liu, K.F., Chen, C. and Cheng, M. (2009), "Modeling and control for nonlinear structural systems via a NN-based approach", Exp. Syst. Appl., 36, 4765-4772. https://doi.org/10.1016/j.eswa.2008.06.062.
  69. Liu, K.F., Chen, C., Shen, C., Chen, C. and Cheng, M. (2009), "A stability criterion for time-delay tension leg platform systems subjected to external force", China Ocean Eng., 23, 49-57.
  70. Liu, K.F., Yeh, K. and Chen, C. (2009), "Adaptive Fuzzy Sliding Mode Control for Seismically excited Bridges with lead Rubber Bearing Isolation", Int. J. Uncertain. Fuzz. Knowled. Bas. Syst., 17, 705-727. https://doi.org/10.1142/S0218488509006224.
  71. Liu, K.F., Yeh, K. and Chen, C. (2009), "The stability of an oceanic structure with T-S fuzzy models", Math. Comput. Simul., 80, 402-426. https://doi.org/10.1016/j.matcom.2009.08.001.
  72. Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges", Comput. Model. Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792.
  73. Luo, Y., Zheng, H., Zhang, H. and Liu, Y. (2021), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995.
  74. Magi, F., Di Maio, D. and Sever, I. (1981), "Fatigue crack growth in fiber reinforced plastics", Polym. Compos., 2(1), 22-28. https://doi.org/10.1002/pc.750020106.
  75. Magi, F., Di Maio, D. and Sever, I. (2016), "Damage initiation and structural degradation through resonance vibration: Application to composite laminates in fatigue", Compos. Sci. Technol., 132, 47-56. https://doi.org/10.1016/j.compscitech.2016.06.013.
  76. Magi, F., Di Maio, D. and Sever, I. (2017), "Validation of initial crack propagation under vibration fatigue by Finite Element analysis", Int. J. Fatigue, 104, 183-119. https://doi.org/10.1016/j.ijfatigue.2017.07.003.
  77. Mandell, J.F. (1985), "Criteria for asymptotic stability of linear time delay systems", IEEE Trans. Autom. Control, 30(2), 158-161. https://doi.org/10.1109/TAC.1985.1103901
  78. Meng, Q., Ma, Q. and Zhou, G. (2022), "Adaptive output feedback control for stochastic uncertain nonlinear time-delay systems", IEEE Tran. Circuit. Syst., II, Exp. Brief., 1-1. https://doi.org/10.1109/TCSII.2022.3152523
  79. Mori, T. (2011), "Alliance for sustainable energy, LLC, assignee. resonance test system", United States Patent US 7, 953, 561.
  80. Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.
  81. Nairn, J.A. and Hu, S. (1992), "The initiation and growth of delaminations induced by matrix microcracks in laminated composites", Int. J. Fract., 57(1), 1-24. https://doi.org/10.1007/BF00013005.
  82. Nairn, J.A. and Hu, S. (2012), "High cycle endurance of carbon fibre reinforced plastic: Delamination prediction and measurement", PhD Thesis, University of Bristol.
  83. Pickard, A. (2012), Vibration Control of Active Structures: An Introduction, Springer.
  84. Preumont, A (2017), "The Boubaker polynomials and their application to solve fractional optimal control problems", Nonlin. Dyn., 88(2), 1013-1026. https://doi.org/10.1007/s11071-013-0841-8.
  85. Qing, W., Xinmin, W. and Shuo, P. (2022), "The three-dimensional molecular structure model of Fushun oil shale kerogen, China", J. Molecul. Struct., 1255, 132380. https://doi.org/10.1016/j.molstruc.2022.132380.
  86. Rabiei, K., Ordokhani, Y. and Babolian, E. (2017), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26(3), 179-190. https://doi.org/10.12989/was.2018.26.3.179.
  87. Razavi, A. and Sarkar, P.P. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., 23, 467-478. https://doi.org/10.12989/sss.2019.23.5.467.
  88. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  89. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2018), "Computational Lagrangian Multiplier Method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. http://dx.doi.org/10.12989/scs.2018.29.2.243.
  90. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  91. Shariatmadar, H. and Razavi, H.M. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.4.449.
  92. Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2002), "Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading", Int. J. Fatigue, 24, 179-184. https://doi.org/10.1016/S0142-1123(01)00071-8.
  93. Sjogren, A. and Asp, L.E. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  94. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Damage and fatigue in composites-A personal account", Compos. Sci. Technol., 68(13), 2585-2591. https://doi.org/10.1016/j.compscitech.2008.04.042.
  95. Sui, T., Marelli, D., Sun, X. and Fu, M. (2020), "Multi-sensor state estimation over lossy channels using coded measurements", Automatica (Oxford), 111, 108561. https://doi.org/10.1016/j.automatica.2019.108561.
  96. Sun, J., Wang, Y., Liu, S., Dehghani, A., Xiang, X., Wei, J. and Wang, X. (2021), "Mechanical, chemical and hydrothermal activation for waste glass reinforced cement", Constr. Build. Mater., 301, 124361. https://doi.org/10.1016/j.conbuildmat.2021.124361
  97. Trinh, H. and Aldeen, M. (1995). "A comment on "Decentralized stabilization of large scale interconnected systems with delays"", IEEE Trans. Autom. Control, 40(5), 914-916. https://doi.org/10.1109/9.384229.
  98. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Temperature dependence of stress-fatigue life data of FRP composites", Mech. Compos. Mater., 47(3), 185-192. https://doi.org/10.1007/s11029-011-9197-7.
  99. Tsai, P.W., Pan, J.S., Liao, B.Y. and Chu, S.C. (2009), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134.
  100. TSai, P.W., Pan, J.S., Liao, B.Y. and Chu, S.C. (2009), "Enhanced artificial bee colony optimization", Int. J. Innov. Comput., Inform. Control, 5(12), 5081-5092.
  101. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  102. Varvani-Farahani, H. and Mivehchi, A. (2011), "Resonant-vibration fatigue testing", Exp. Mech., 2, 1-8. https://doi.org/10.1007/BF02325804.
  103. Wang, X. and Lyu, X. (2021), "Experimental study on vertical water entry of twin spheres side-by-side", Ocean Eng., 221, 108508. https://doi.org/10.1016/j.oceaneng.2020.108508.
  104. Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230, 111599. https://doi.org/10.1016/j.engstruct.2020.111599.
  105. Wozney, G.P. (1962), "Sliding mode control for nonlinear and hysteric structures", J. Eng. Mech., ASCE, 121(12), 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330).
  106. Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L.F. and Nie, W. (2021), "A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county, China", ISPRS Int. J. Geo-Inform., 10(2), 93. https://doi.org/10.3390/ijgi10020093.
  107. Yang, J.N., J.C. and Wu, A.K. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641.
  108. Zaky, M.A. (2019), "A Legendre collocation method for distributed order fractional optimal control problems", Nonlin. Dyn., 91(4), 2667-2681. https://doi.org/10.1007/s11071-013-0869-9.
  109. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D.K., ... & Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://doi.org/10.12989/scs.2018.28.4.439.
  110. Zhang, C., Mousavi, A.A., Masri, S.F., Gholipour, G., Yan, K. and Li, X. (2022), "Vibration feature extraction using signal processing techniques for structural health monitoring: A review", Mech. Syst. Signal Pr., 177, 109175. https://doi.org/10.1016/j.ymssp.2022.109175.
  111. Zhang, M., Chen, Y. and Lin, J. (2021), "A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment", IEEE Intern. Thing. J., 8(13), 10830-10842. https://doi.org/10.1109/JIOT.2021.3051060.
  112. Zhang, M., Chen, Y. and Susilo, W. (2020), "PPO-CPQ: A privacy-preserving optimization of clinical pathway query for e-healthcare systems", IEEE Intern. Thing. J., 7(10), 10660-10672. https://doi.org/10.1109/JIOT.2020.3007518.
  113. Zhang, W., Tang, Z., Yang, Y., Wei, J. and Stanislav, P. (2021), "Mixed-mode debonding behavior between CFRP plates and concrete under fatigue loading", J. Struct. Eng., 147(5), 04021055. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003032.
  114. Zhang, Y. (2018), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  115. Zheng, W. and Yin, L. (2022), "Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching network", PeerJ. Comput. Sci., 8, e908. https://doi.org/10.7717/peerj-cs.908.
  116. Zheng, W., Liu, X. and Yin, L. (2021). "Research on image classification method based on improved multi-scale relational network", PeerJ. Comput. Sci., 7, e613. https://doi.org/10.7717/peerj-cs.613.
  117. Zheng, W., Tian, X., Yang, B., Liu, S., Ding, Y., Tian, J. and Yin, L. (2022), "A few shot classification methods based on multiscale relational networks", Appl. Sci., 12(8), 4059. https://doi.org/10.3390/app12084059.
  118. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.