DOI QR코드

DOI QR Code

The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics

기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석

  • Hyun, Yu-Kyung (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Shin, Beomcheol (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Choi, Yuna (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Kim, Ji-Yeong (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Sang-Min (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Ji, Hee-Sook (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Boo, Kyung-On (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lim, Somin (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Kim, Hyeri (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Ryu, Young (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Park, Yeon-Hee (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Park, Hyeong-Sik (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Choo, Sung-Ho (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hyun, Seung-Hwon (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Hwang, Seung-On (Climate Model Development Team, Operational Systems Development Department, National Institute of Meteorological Sciences)
  • 현유경 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 이조한 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 신범철 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 최유나 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 김지영 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 이상민 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 지희숙 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 부경온 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 임소민 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 김혜리 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 류영 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 박연희 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 박형식 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 추성호 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 현승훤 (국립기상과학원 현업운영개발부 기후모델개발팀) ;
  • 황승언 (국립기상과학원 현업운영개발부 기후모델개발팀)
  • Received : 2021.12.23
  • Accepted : 2022.04.06
  • Published : 2022.06.30

Abstract

In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「기후예측 현업시스템 개발」(KMA2018-00322)의 지원으로 수행되었습니다.

References

  1. Adler, F. A., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) Monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, doi:10.3390/atmos9040138.
  2. Ahn, M.-S., D. Kim, D. Kang, J. Lee, K. R. Sperber, P. J. Gleckler, X. Jiang, Y.-G. Ham, and H. Kim, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, doi:10.1029/2020GL087250.
  3. Alberto, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 1891-1910, doi:10.1175/2010MWR3615.1.
  4. Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140.
  5. Chang, P.-H., S.-O. Hwang, S.-H. Choo, J. Lee, S.-M. Lee, and K.-O. Boo, 2021: Global Ocean Data Assimilation and Prediction System in KMA: Description and assessment. Atmosphere, 31, 229-240, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract).
  6. Davis, P., C. Ruth, A. A. Scaife, and J. Kettleborough, 2020: A large ensemble seasonal forecasting system: GloSea6. Abstract, AGU Fall Meeting 2020, #A192-05, American Geophysical Union.
  7. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.
  8. Gonzalez, A. O., and X. Jiang, 2017: Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden-Julian oscillation. Geophys. Res. Lett., 44, 2588-2596, doi:10.1002/2016GL072430.
  9. Hyun, Y.-K., J. Park, J. Lee, S. Lim, S.-I. Heo, H. Ham, S.-M. Lee, H.-S. Ji, and Y. Kim, 2020: Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems. Atmosphere, 30, 141-154, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract).
  10. Kang, D., D. Kim, M.-S. Ahn, and S.-I. Ahn, 2021: The role of the background meridional moisture gradient on the propagation of the MJO over the Maritime Continent. J. Climate, 34, 6565-6581, doi:10.1175/JCLI-D-20-0085.1.
  11. Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophys. Res. Atmos., 124, 9314-9331, doi:10.1029/2019JD031139.
  12. Kim, H., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021a: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: Operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3. 341 (in Korean with English abstract).
  13. Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021b: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-576, doi:10.14191/Atmos.2021.31.5.563 (in Korean with English abstract).
  14. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233 (in Korean with English abstract).
  15. KMA, 2015: Long-range Forecast Work Manual, Korea Meteorological Administration, 110 pp [Available online at http://book.kma.go.kr] (in Korean).
  16. Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill for East Asian summer monsoon indices in a KMA Global Seasonal forecasting system (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract).
  17. Lim, S., Y.-K. Hyun, H. Ji, and J. Lee, 2021: Application of land initialization and its impact in KMA's operational climate prediction system. Atmosphere, 31, 327-340, doi:10.14191/Atmos.2021.31.3.327 (in Korean with English abstract).
  18. MacLachlan C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
  19. Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014.
  20. Park, Y.-H., Y.-K. Hyun, S.-I. Heo, and H.-S. Ji, 2021: Assessment of the prediction performance of ensemble size-related in GloSea5 hindcast data. Atmosphere, 31, 511-523, doi:10.14191/Atmos.2021.31.5.511 (in Korean with English abstract).
  21. Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd8-2221-2015.
  22. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., Atmos., 108, 4407, doi:10.1029/2002JD002670.
  23. Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018.
  24. Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514-2519, doi:10.1002/2014GL059637.
  25. Seo, E., M.-I. Lee, J.-H. Jeong, H.-S. Kang, and D.-J. Won, 2016: Improvement of soil moisture initialization for a global seasonal forecast system. Atmosphere, 26, 35-45, doi:10.14191/Atmos.2016.26.1.035 (in Korean with English abstract).
  26. Seo, E., M.-I., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4.
  27. Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geosci. Model Dev., 11, 3187-3213, doi:10.5194/gmd11-3187-2018.
  28. Waters, J., D. J. Lea, M. J. Martin, I. Mirouze, A. Weaver, and J. While, 2015: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Q. J. R. Meteorol. Soc., 141, 333-349, doi:10.1002/qj.2388.
  29. Walters, D., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017.
  30. Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963. https://doi.org/10.5194/gmd-12-1909-2019
  31. Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Sys., 10, 357-380, doi:10.1002/2017MS001115.
  32. Yang, Y.-M., T. Shim, J.-Y. Moon, K.-Y. Kim, and Y.-K. Hyun, 2021: Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere, 12, 114, doi:10.3390/atmos12010114.