DOI QR코드

DOI QR Code

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young (Department of Advanced Materials Engineering, Graduate School Kyonggi University) ;
  • Park, Yong Joon (Department of Advanced Materials Engineering, Graduate School Kyonggi University)
  • Received : 2022.05.26
  • Accepted : 2022.06.07
  • Published : 2022.08.28

Abstract

Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Keywords

Acknowledgement

This work was supported by Kyonggi University Research Grant 2020.

References

  1. A. Banerjee, X. Wang, C. Fang, E.A. Wu, and Y.S. Meng, Chem. Rev., 2020, 120(14), 6878-6933. https://doi.org/10.1021/acs.chemrev.0c00101
  2. Y. Xiao, Y. Wang, S.H. Bo, J.C. Kim, L.J. Miara, and G. Ceder, Nat. Rev. Mater., 2020, 5, 105-126.
  3. Y. Xiao, L.J. Miara, Y. Wang, and G. Ceder, Joule, 2019, 3(5), 1252-1275. https://doi.org/10.1016/j.joule.2019.02.006
  4. C.B. Lim and Y.J. Park, J. Electrochem. Sci. Technol., 2020, 11(4), 411-420.
  5. D.H. Yoon and Y.J. Park, J. Electrochem. Sci. Technol., 2021, 12(1), 126-136. https://doi.org/10.33961/jecst.2020.01361
  6. A. Banerjee, H. Tang, X. Wang, J.H. Cheng, H. Nguyen, M. Zhang, D.H.S. Tan, T.A. Wynn, E.A. Wu, J.M. Doux, T. Wu, L. Ma, G.E. Sterbinsky, M.S. D'Souza, S.P. Ong, and Y.S. Meng, ACS Appl. Mater. Interfaces, 2019, 11(46), 43138-43145. https://doi.org/10.1021/acsami.9b13955
  7. S.P. Culver, R. Koerver, W.G. Zeier, and J. Janek, Adv. Energy Mater., 2019, 9(24), 1900626. https://doi.org/10.1002/aenm.201900626
  8. H. Nakamura, T. Kawaguchi, T. Masuyama, A. Sakuda, T. Saito, K. Kuratani, S. Ohsaki, and S. Watano, J. Power Sources, 2020, 448, 227579. https://doi.org/10.1016/j.jpowsour.2019.227579
  9. F. Walther, F. Strauss, X. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski, and J. Janek, Chem. Mater., 2021, 33(6), 2110-2125. https://doi.org/10.1021/acs.chemmater.0c04660
  10. K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, and T. Sasaki, Solid State Ion., 2008, 179(27-32), 1333-1337. https://doi.org/10.1016/j.ssi.2008.02.017
  11. C.B. Lim and Y.J. Park, Sci. Rep., 2020, 10(1), 1-12. https://doi.org/10.1038/s41598-019-56847-4
  12. J.S. Lee and Y.J. Park, ACS Appl. Mater. Interfaces, 2021, 13(32), 38333-38345. https://doi.org/10.1021/acsami.1c10294
  13. F. Strauss, J.H. Teo, J. Maibach, A.Y. Kim, A. Mazilkin, J. Janek, and T. Brezesinski, ACS Appl. Mater. Interfaces, 2020, 12(51), 57146-57154. https://doi.org/10.1021/acsami.0c18590
  14. Y.J. Kim, R. Rajagopal, S. Kang, and K.S. Ryu, Chem. Eng. J., 2020, 386, 123975. https://doi.org/10.1016/j.cej.2019.123975
  15. Y. Seino, T. Ota, and K. Takada, J. Power Sources, 2011, 196(15), 6488-6492. https://doi.org/10.1016/j.jpowsour.2011.03.090
  16. Y. Zhu, X. He, and Y. Mo, J. Mater. Chem. A, 2016, 4(9), 3253-3266. https://doi.org/10.1039/C5TA08574H
  17. G. Liu, Y. Lu, H. Wan, W. Weng, L. Cai, Z. Li, X. Que, H. Liu, and X. Yao, ACS Appl. Mater. Interfaces, 2020, 12(25), 28083-28090. https://doi.org/10.1021/acsami.0c03610
  18. Y. Lee, J. Lee, K.Y. Lee, J. Mun, J.K. Lee, and W. Choi, J. Power Sources, 2016, 315, 284-293. https://doi.org/10.1016/j.jpowsour.2016.03.024
  19. H.G. Song, J.Y. Kim, K.T. Kim, and Y.J. Park, J. Power Sources, 2011, 196(16), 6847-6855. https://doi.org/10.1016/j.jpowsour.2010.09.027
  20. S. Li, J. Wu, J. Li, G. Liu, Y. Cui, and H. Liu, ACS Appl. Energy Mater., 2021, 4(3), 2257-2265.
  21. P. Zou, Z. Lin, M. Fan, F. Wang, Y. Liu, and X. Xiong, Appl. Surf. Sci., 2020, 504, 144506. https://doi.org/10.1016/j.apsusc.2019.144506
  22. T. Sattar, S.J. Sim, B.S. Jin, and H.S. Kim, Sci. Rep., 2021, 11(1), 1-9. https://doi.org/10.1038/s41598-020-79139-8
  23. V. Mereacre, N. Bohn, P. Stuble, L. Pfaffmann, and J.R. Binder, ACS Appl. Energy Mater., 2021, 4(5), 4271-4276.
  24. S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, Q. Zhang, J. Wang, R. Chen, and F. Wu, ACS Appl. Mater. Interfaces, 2017, 9(35), 29732-29743. https://doi.org/10.1021/acsami.7b08006
  25. X. Li, L. Jin, D. Song, H. Zhang, X. Shi, Z. Wang, L. Zhang, and L. Zhu, J. Energy Chem., 2020, 40, 39-45. https://doi.org/10.1016/j.jechem.2019.02.006
  26. A.Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, and T. Brezesinski, Chem. Mater., 2019, 31(23), 9664-9672. https://doi.org/10.1021/acs.chemmater.9b02947
  27. R. Koerver, I. Aygun, T. Leichtweiss, C. Dietrich, W. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, and J. Janek, Chem. Mater., 2017, 29(13), 5574-5582. https://doi.org/10.1021/acs.chemmater.7b00931
  28. W. Zhang, T. Leichtweiss, S.P. Culver, R. Koerver, D. Das, D.A. Weber, W.G. Zeier, and J. Janek, ACS Appl. Mater. Interfaces, 2017, 9(41), 35888-35896. https://doi.org/10.1021/acsami.7b11530
  29. K. Yoon, J.J. Kim, W.M. Seong, M.H. Lee, and K. Kang, Sci. Rep., 2018, 8(1), 1-7.
  30. A. Manthiram, B. Song, and W. Li, Energy Storage Mater., 2017, 6, 125-139.
  31. A.M. Nolan, Y. Zhu, X. He, Q. Bai, and Y. Mo, Joule, 2018, 2(10), 2016-2046. https://doi.org/10.1016/j.joule.2018.08.017