DOI QR코드

DOI QR Code

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University) ;
  • Jung, Suhan (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University) ;
  • Jang, Ji Sun (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University) ;
  • Mo, Shenzheng (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University) ;
  • Kwon, Jun-Oh (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University) ;
  • Kim, Min Kyung (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University) ;
  • Kim, Hong-Hee (Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University)
  • Received : 2022.04.08
  • Accepted : 2022.06.20
  • Published : 2022.10.31

Abstract

Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea (NRF-2020R1A2C2010082 and NRF-2018R1A5A2024418) awarded to H.-H. Kim.

References

  1. Amarasekara, D.S., Yun, H., Kim, S., Lee, N., Kim, H., and Rho, J. (2018). Regulation of osteoclast differentiation by cytokine networks. Immune Netw. 18, e8. https://doi.org/10.4110/in.2018.18.e8
  2. Ashrafi, G. and Schwarz, T.L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31-42. https://doi.org/10.1038/cdd.2012.81
  3. Besse, A., Lamothe, B., Campos, A.D., Webster, W.K., Maddineni, U., Lin, S.C., Wu, H., and Darnay, B.G. (2007). TAK1-dependent signaling requires functional interaction with TAB2/TAB3. J. Biol. Chem. 282, 3918-3928. https://doi.org/10.1074/jbc.M608867200
  4. Bhatia, D., Chung, K.P., Nakahira, K., Patino, E., Rice, M.C., Torres, L.K., Muthukumar, T., Choi, A.M., Akchurin, O.M., and Choi, M.E. (2019). Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826. https://doi.org/10.1172/jci.insight.132826
  5. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  6. Chen, J. and Chen, Z.J. (2013). Regulation of NF-kappaB by ubiquitination. Curr. Opin. Immunol. 25, 4-12. https://doi.org/10.1016/j.coi.2012.12.005
  7. Downey, P.A. and Siegel, M.I. (2006). Bone biology and the clinical implications for osteoporosis. Phys. Ther. 86, 77-91. https://doi.org/10.1093/ptj/86.1.77
  8. Franzoso, G., Carlson, L., Xing, L., Poljak, L., Shores, E.W., Brown, K.D., Leonardi, A., Tran, T., Boyce, B.F., and Siebenlist, U. (1997). Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11, 3482-3496. https://doi.org/10.1101/gad.11.24.3482
  9. Gao, F., Chen, D., Si, J.M., Hu, Q.S., Qin, Z.H., Fang, M., and Wang, G.H. (2015). The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24, 2528-2538. https://doi.org/10.1093/hmg/ddv017
  10. Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131. https://doi.org/10.1038/ncb2012
  11. Goodman, S.B., Gibon, E., Gallo, J., and Takagi, M. (2022). Macrophage polarization and the osteoimmunology of periprosthetic osteolysis. Curr. Osteoporos. Rep. 20, 43-52. https://doi.org/10.1007/s11914-022-00720-3
  12. Harper, J.W., Ordureau, A., and Heo, J.M. (2018). Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19, 93-108. https://doi.org/10.1038/nrm.2017.129
  13. Henn, I.H., Bouman, L., Schlehe, J.S., Schlierf, A., Schramm, J.E., Wegener, E., Nakaso, K., Culmsee, C., Berninger, B., Krappmann, D., et al. (2007). Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J. Neurosci. 27, 1868-1878. https://doi.org/10.1523/JNEUROSCI.5537-06.2007
  14. Horne, W.C., Sanjay, A., Bruzzaniti, A., and Baron, R. (2005). The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol. Rev. 208, 106-125. https://doi.org/10.1111/j.0105-2896.2005.00335.x
  15. Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997). Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3, 1285-1289. https://doi.org/10.1038/nm1197-1285
  16. Jin, S.M. and Youle, R.J. (2012). PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125, 795-799. https://doi.org/10.1242/jcs.093849
  17. Kamienieva, I., Duszynski, J., and Szczepanowska, J. (2021). Multitasking guardian of mitochondrial quality: parkin function and Parkinson's disease. Transl. Neurodegener. 10, 5. https://doi.org/10.1186/s40035-020-00229-8
  18. Kim, J.H. and Kim, N. (2014). Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21, 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
  19. Laforge, M., Rodrigues, V., Silvestre, R., Gautier, C., Weil, R., Corti, O., and Estaquier, J. (2016). NF-kappaB pathway controls mitochondrial dynamics. Cell Death Differ. 23, 89-98. https://doi.org/10.1038/cdd.2015.42
  20. Lamothe, B., Webster, W.K., Gopinathan, A., Besse, A., Campos, A.D., and Darnay, B.G. (2007). TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem. Biophys. Res. Commun. 359, 1044-1049. https://doi.org/10.1016/j.bbrc.2007.06.017
  21. Li, Z., Zhu, X., Xu, R., Wang, Y., Hu, R., and Xu, W. (2019). Deacylcynaropicrin inhibits RANKL-induced osteoclastogenesis by inhibiting NF-kappaB and MAPK and promoting M2 polarization of macrophages. Front. Pharmacol. 10, 599. https://doi.org/10.3389/fphar.2019.00599
  22. Lin, D.C., Xu, L., Chen, Y., Yan, H., Hazawa, M., Doan, N., Said, J.W., Ding, L.W., Liu, L.Z., Yang, H., et al. (2015). Genomic and functional analysis of the E3 ligase PARK2 in glioma. Cancer Res. 75, 1815-1827.
  23. Liu, J., Wang, S., Zhang, P., Said-Al-Naief, N., Michalek, S.M., and Feng, X. (2009). Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J. Biol. Chem. 284, 12512-12523. https://doi.org/10.1074/jbc.M809789200
  24. Lubbe, S.J., Bustos, B.I., Hu, J., Krainc, D., Joseph, T., Hehir, J., Tan, M., Zhang, W., Escott-Price, V., Williams, N.M., et al. (2021). Assessing the relationship between monoallelic PRKN mutations and Parkinson's risk. Hum. Mol. Genet. 30, 78-86. https://doi.org/10.1093/hmg/ddaa273
  25. Luo, G., Li, F., Li, X., Wang, Z.G., and Zhang, B. (2018). TNFalpha and RANKL promote osteoclastogenesis by upregulating RANK via the NFkappaB pathway. Mol. Med. Rep. 17, 6605-6611.
  26. Madeo, F., Eisenberg, T., Pietrocola, F., and Kroemer, G. (2018). Spermidine in health and disease. Science 359, eaan2788. https://doi.org/10.1126/science.aan2788
  27. Martinez, F.O., Sica, A., Mantovani, A., and Locati, M. (2008). Macrophage activation and polarization. Front. Biosci. 13, 453-461. https://doi.org/10.2741/2692
  28. Muller-Rischart, A.K., Pilsl, A., Beaudette, P., Patra, M., Hadian, K., Funke, M., Peis, R., Deinlein, A., Schweimer, C., Kuhn, P.H., et al. (2013). The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 49, 908-921. https://doi.org/10.1016/j.molcel.2013.01.036
  29. Nakamura, I. and Jimi, E. (2006). Regulation of osteoclast differentiation and function by interleukin-1. Vitam. Horm. 74, 357-370. Park, J.H., Lee, N.K., and Lee, S.Y. (2017). Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol. Cells 40, 706-713.
  30. Poole, A.C., Thomas, R.E., Yu, S., Vincow, E.S., and Pallanck, L. (2010). The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. Plos One 5, e10054. https://doi.org/10.1371/journal.pone.0010054
  31. Quinn, P.M.J., Moreira, P.I., Ambrosio, A.F., and Alves, C.H. (2020). PINK1/ PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol. Commun. 8, 189. https://doi.org/10.1186/s40478-020-01062-w
  32. Sanjay, A., Houghton, A., Neff, L., DiDomenico, E., Bardelay, C., Antoine, E., Levy, J., Gailit, J., Bowtell, D., Horne, W.C., et al. (2001). Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrinmediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol. 152, 181-195. https://doi.org/10.1083/jcb.152.1.181
  33. Seirafi, M., Kozlov, G., and Gehring, K. (2015). Parkin structure and function. FEBS J. 282, 2076-2088. https://doi.org/10.1111/febs.13249
  34. Takahashi, N., Ejiri, S., Yanagisawa, S., and Ozawa, H. (2007). Regulation of osteoclast polarization. Odontology 95, 1-9. https://doi.org/10.1007/s10266-007-0071-y
  35. Tanaka, S., Amling, M., Neff, L., Peyman, A., Uhlmann, E., Levy, J.B., and Baron, R. (1996). c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383, 528-531. https://doi.org/10.1038/383528a0
  36. Wada, T., Nakashima, T., Hiroshi, N., and Penninger, J.M. (2006). RANKLRANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17-25.
  37. Walsh, M.C., Kim, G.K., Maurizio, P.L., Molnar, E.E., and Choi, Y. (2008). TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. Plos One 3, e4064. https://doi.org/10.1371/journal.pone.0004064
  38. Wang, Y., Shan, B., Liang, Y., Wei, H., and Yuan, J. (2018). Parkin regulates NF-kappaB by mediating site-specific ubiquitination of RIPK1. Cell Death Dis. 9, 732. https://doi.org/10.1038/s41419-018-0770-z
  39. Yamamoto, T., Hinoi, E., Fujita, H., Iezaki, T., Takahata, Y., Takamori, M., and Yoneda, Y. (2012). The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice. Br. J. Pharmacol. 166, 1084-1096 https://doi.org/10.1111/j.1476-5381.2012.01856.x
  40. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95, 3597-3602. https://doi.org/10.1073/pnas.95.7.3597
  41. Zhao, Z., Hou, X., Yin, X., Li, Y., Duan, R., Boyce, B.F., and Yao, Z. (2015). TNF induction of NF-kappaB RelB enhances RANKL-induced osteoclastogenesis by promoting inflammatory macrophage differentiation but also limits it through suppression of NFATc1 expression. Plos One 10, e0135728. https://doi.org/10.1371/journal.pone.0135728
  42. Zhou, X., Li, Y., Wang, W., Wang, S., Hou, J., Zhang, A., Lv, B., Gao, C., Yan, Z., Pang, D., et al. (2020). Regulation of Hippo/YAP signaling and Esophageal Squamous Carcinoma progression by an E3 ubiquitin ligase PARK2. Theranostics 10, 9443-9457. https://doi.org/10.7150/thno.46078
  43. Zhu, L., Zhao, Q., Yang, T., Ding, W., and Zhao, Y. (2015). Cellular metabolism and macrophage functional polarization. Int. Rev. Immunol. 34, 82-100. https://doi.org/10.3109/08830185.2014.969421
  44. Ziviani, E., Tao, R.N., and Whitworth, A.J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. U. S. A. 107, 5018-5023. https://doi.org/10.1073/pnas.0913485107
  45. Zou, W. and Bar-Shavit, Z. (2002). Dual modulation of osteoclast differentiation by lipopolysaccharide. J. Bone Miner. Res. 17, 1211-1218. https://doi.org/10.1359/jbmr.2002.17.7.1211