DOI QR코드

DOI QR Code

Tertiary Structure of Ginsenoside Re Studied by NMR Spectroscopy

  • Kang, Dong-Il (Department of Chemistry, Konkuk University) ;
  • Jung, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Seoung-Keum (Department of Chemistry, Konkuk University) ;
  • Lee, Sung-Ah (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jhon, Gil-Ja (Department of Chemistry, Ewha Womans University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2007.12.20

Abstract

Ginseng has long been used as a traditional medicine in Asian countries including Korea and China. In recent years, it has been reported that the biological activities of ginseng are due to its active components, ginsenosides. Ginsenosides are represented by triterpenes of the dammarane type. Ginsenoside Re consists of two glucose rings, one rhamnose ring, and the triterpene ring. In the present study ginsenoside Re has been isolated from the Korean ginseng (Panax ginseng) and the tertiary structure has been determined using NMR spectroscopy. Flexibilities around each linkages described by seven torsion angles were considered. The structures of ginsenoside Re obtained by NMR spectroscopy show the rigidity around the glucopyranosyl ring II and alkene side chain. The dihedral angles of φ5, φ6, φ7 are about 150o, 50o and 45o, respectively. In addition, flexibility exists around rhamnopyranosyl and glucopyronosyl moiety. The linkage around the rhamnopyranosyl and glucopyranosyl ring I, are divided into three groups. This flexibility seems to play important role in regulation of the hydrophobic surface exposed to the solvent. Because of the growing need for the structural determination of ginsenoside, this result can help to understand their well-accepted pharmacological effects of ginsenoside Re.

Keywords

References

  1. Francis, G.; Kerem, Z.; Makkar, H. P. S.; Becker, K. Br. J. Nutr. 2002, 88, 587-605 https://doi.org/10.1079/BJN2002725
  2. Nah, S. Y. Korea J. Ginseng Sci. 1997, 21, 1-12
  3. Morinaga, O.; Tanaka, H.; Shoyama, Y. J. Chromatogr. B 2006, 830, 100-104 https://doi.org/10.1016/j.jchromb.2005.10.040
  4. Cho, W. C. S; Chung, W.; Lee, S. K. W.; Leung, A. W. N.; Cheng, C. H. K.; Yue, K. K. M. Eur. J. Pharmacol. 2006, 550, 173-179 https://doi.org/10.1016/j.ejphar.2006.08.056
  5. Ji, Z. N.; Dong, T. T. X.; Ye, W. C.; Choi, R. C.; Lo, C. K.; Tsim, K. W. K. J. Ethnopharmacol. 2006, 11, 48-52
  6. Shibata, S.; Ando, T.; Tanaka, O. Chem. Pharm. Bull. 1966, 14, 1157-1161 https://doi.org/10.1248/cpb.14.1157
  7. Shibata, S.; Tanaka, O.; Shoji, J.; Saito, H. Chemistry and Pharamacology of Panax in Economics and Medical Plant Research; Wagner, H., Hikino, H., Fransworth, N. R., Eds.; Academic: Tokyo, 1985; Vol. 1, pp 218-294
  8. Cui, J. F.; Garle, M.; Lund, E.; Bjorkhem, I.; Eneroth, P. Anal. Biochem. 1993, 210, 411-417 https://doi.org/10.1006/abio.1993.1215
  9. Kang, D. I.; Lee, J. Y.; Yang, J. Y.; Jeong, S. M.; Lee, J. H.; Nah, S. Y.; Kim, Y. Biochem. Biophys. Res. Commun. 2005, 333, 1194- 1201 https://doi.org/10.1016/j.bbrc.2005.06.026
  10. Ko, H.; Shim, G.; Kim, Y. Bull. Korean Chem. Soc. 2005, 26, 2001-2006 https://doi.org/10.5012/bkcs.2005.26.12.2001
  11. Folch, J.; Lees, M.; Stanley, G. H. S. J. Biol. Chem. 1957, 226, 497-509
  12. Suzuki, K. J. Neurochem. 1965, 12, 629-638 https://doi.org/10.1111/j.1471-4159.1965.tb04256.x
  13. Chang, Y. S.; Kim, B. H.; Hong, Y. S.; Han, S. Y.; Jhon, G. J. Bull. Korean Chem. Soc. 1998, 7, 721-723
  14. Rance, M.; Sorenson, O. W.; Bodenhausen, G.; Wagner, G.; Ernst, R. R.; Wuthrich, K. Biochem. Biophys. Res. Commun. 1983, 117, 479-485 https://doi.org/10.1016/0006-291X(83)91225-1
  15. Braunschweiler, L.; Ernst, R. R. J. Magn. Reson. 1983, 53, 521- 528
  16. Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95-117 https://doi.org/10.1080/00268978000102601
  17. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355-360
  18. Kessler, H.; Gehrke, M.; Griesinger, C. Angew. Chem. 1988, 100, 507-554 https://doi.org/10.1002/ange.19881000407
  19. Bax, A.; Ikura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R. J. Magn. Reson. 1990, 86, 304-318
  20. Accelrys Software Inc.: San Diego, CA, USA
  21. Brunger, A. T. X-PLOR 3.1 Manual; Yale University Press: New Haven, CT, 1992
  22. Asakawa, J.; Kasai, R.; Yamasaki, K.; Tanaka, O. Tetrahedron 1977, 33, 1935-1939 https://doi.org/10.1016/0040-4020(77)80379-7
  23. Shim, G.; Shin, J.; Kim, Y. Bull. Korean Chem. Soc. 2004, 25, 198-202 https://doi.org/10.5012/bkcs.2004.25.2.198
  24. Shim, G.; Lee, S.; Kim, Y. Bull. Korean Chem. Soc. 1997, 18, 415- 424
  25. Lee, S.; Kim, Y. Bull. Korean Chem. Soc. 2004, 25, 838-842 https://doi.org/10.1007/s11814-008-0139-6
  26. Adams, B.; Lerner, L. J. Am. Chem. Soc. 1992, 114, 4827-4829 https://doi.org/10.1021/ja00038a055
  27. Chung, I.; Ali, M.; Yang, Y.; Peebles, C. A. M.; Chun, S.; Lee, S.; San, K.; Ahmad, A. Bull. Korean Chem. Soc. 2007, 28, 1294-1298 https://doi.org/10.5012/bkcs.2007.28.8.1294

Cited by

  1. NMR Assignment of des [40-93] Mutant of Bovine Angiogenin vol.29, pp.11, 2007, https://doi.org/10.5012/bkcs.2008.29.11.2259
  2. Molecular Simulations and Conformational Studies of Fucoseα1-3)Gal(β1-X)GlcNAc where X=3, 4, or 6 Oligosaccharides vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1755
  3. Inhibition of Human 20S Proteasome by Ginsenosides from Panax ginseng vol.30, pp.6, 2007, https://doi.org/10.5012/bkcs.2009.30.6.1385
  4. Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots vol.38, pp.2, 2014, https://doi.org/10.1016/j.jgr.2013.10.002
  5. Taste characteristics based quantitative and qualitative evaluation of ginseng adulteration vol.95, pp.7, 2015, https://doi.org/10.1002/jsfa.6858
  6. Conformational studies of dammarane‐type triterpenoids using computational and NMR spectroscopic methods vol.53, pp.12, 2007, https://doi.org/10.1002/mrc.4302