Biogeochemical Organic Carbon Cycles in the Intertidal Sandy Sediment of Nakdong Estuary

낙동강 하구 갯벌 사질 퇴적물에서 생지화학적 유기탄소순환

  • Lee, Jae-Seong (Marine Environment Research Team, Marine Environment Division, NFRDI) ;
  • Park, Mi-Ok (Marine Environment Research Team, Marine Environment Division, NFRDI) ;
  • An, Soon-Mo (Department of Marine Science, Pusan National University) ;
  • Kim, Seong-Gil (Marine Environment Research Team, Marine Environment Division, NFRDI) ;
  • Kim, Seong-Soo (Marine Environment Research Team, Marine Environment Division, NFRDI) ;
  • Jung, Rae-Hong (Marine Environment Research Team, Marine Environment Division, NFRDI) ;
  • Park, Jong-Soo (Marine Environment Research Team, Marine Environment Division, NFRDI) ;
  • Jin, Hyun-Gook (Marine Enivironment Team, East Sea Fisheries Institute, NFRDI)
  • 이재성 (국립수산과학원 해양환경부 환경연구팀) ;
  • 박미옥 (국립수산과학원 해양환경부 환경연구팀) ;
  • 안순모 (부산대학교 해양학과) ;
  • 김성길 (국립수산과학원 해양환경부 환경연구팀) ;
  • 김성수 (국립수산과학원 해양환경부 환경연구팀) ;
  • 정래홍 (국립수산과학원 해양환경부 환경연구팀) ;
  • 박종수 (국립수산과학원 해양환경부 환경연구팀) ;
  • 진현국 (국립수산과학원 동해수산연구소 해양환경팀)
  • Published : 2007.11.30

Abstract

In order to understand biogeochemical cycles of organic carbon in the permeable intertidal sandy sediments of the Nakdong estuary, we estimated the organic carbon production and consumption rates both in situ and in the laboratory. The Chl-a content of the sediment and the nutrient concentrations in below surface pore water in the sandy sediment were lower than in the muddy sediment. The sediment oxygen consumption rates were relatively high, especially when compared with rates reported from other coastal muddy sediments with higher organic carbon contents. This implied that both the organic carbon degradation and material transport in the sandy sediment were enhanced by advection-related process. The simple mass balance estimation of organic carbon fluxes showed that the major sources of carbon in the sediment would originate from benthic microalgae and detrital organic carbon derived from salt marsh. The daily natural biocatalzed filtration, extrapolated from filtration rates and the total area of the Nakdong estuary, was one order higher than the maximum capability of sewage plants in Busan metropolitan city. This implies that the sandy sediment contributes greatly to biogeochemical purification in the area, and is important for the re-distribution of materials in the coastal environment.

투수성이 큰 낙동강 하구 사질 갯벌 퇴적물에서 유기탄소의 생지화학적 순환을 이해하기 위해 현장과 실험실에서 유기탄소 생산 및 소비에 대한 정보를 추정했다. 퇴적물 상부층의 Chl-a 농도와 공극수의 영양염 농도는 니질 퇴적물에 비해 낮았다. 반면, 사질 퇴적물의 산소소모율은 유기물 함량이 높은 연안 니질 퇴적물 보다 높아 이류에 의한 유기탄소의 분해와 물질의 이동이 큰 것을 의미했다. 간단한 유기탄소의 물질수지는 퇴적물에서 유기탄소의 주 공급원이 퇴적물 표층에 서식하는 저서미세조류와 수생식물의 쇄설성 유기물로 나타났다. 해수 여과율에 낙동강 전체 면적을 외삽한 일당 자연 생촉매 여과양은 부산시 7개 주요 하수종말처리장의 최대 처리량 보다 한 자리수 이상 크게 나타나 연안환경에서 사질퇴적물이 생지화학적 정화와 물질의 재분배에 매우 큰 기여를 할 것으로 판단된다.

Keywords

References

  1. 김동선, 2006. 강화도 남부 갯벌퇴적물에서 산소 미세전극을 이용한 산소소모율 추정. Ocean and Polar Research. 28(2): 119-127 https://doi.org/10.4217/OPR.2006.28.2.119
  2. 부산광역시, 2006. 2006 환경백서. 52-6260000-000115-10, 238p
  3. 안순모, 2007. 훼손된 자연 생태계 복원기술: 낙동강 하구역 습지 생태계 훼손지역 복원 및 관리기술. 환경부, 051-061-013, 288p
  4. 이재성, 김기현, 유준, 정래홍, 고태승, 2003. 산소미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소산화율 추정. 한국해양학회지, 바다. 8: 392-400
  5. 이재성, 정래홍, 김기현, 권정노, 이원찬, 이필용, 구준호, 최우정, 2004. 해상 어류가두리양식장의 환경영향평가: I. 퇴적물 산소소모율 및 저서동물을 이용한 유기물 오염영향권 추정 및 유기탄소 순환, 한국해양학회지, 바다. 9: 30-39
  6. 정창수, 김석현, 강동진, 박용철, 윤철호, 홍기훈, 1999. 해저퇴적물의 광합성 색소 유도체 함량분포에 의한 마산만 부영양화 진행 과정 추정. 한국해양학회지, 바다. 4: 101-106
  7. 해양수산부, 2005. 해양환경공정시험방법. 400p
  8. Berg, P., H. Roy, F. Janssen, V. Meyer, B.B. Jorgensen, M. Huettel, and D. de Beer, 2003. Oxygen uptake by aquatic sediment measured with a novel-invasive eddy correction technique. Mar. Ecol. Prog. Ser., 261: 75-83 https://doi.org/10.3354/meps261075
  9. Billerbeck, M., H. Roy, K. Bosselmann, and M. Huettel, 2007. Benthic photosynthesis in submerged Wadden Sea intertidal flats, Estuarine, Coastal and Shelf Science, 71: 704-716 https://doi.org/10.1016/j.ecss.2006.09.019
  10. Boudreau, B.P., M. Huettel, S. Forster, R.A. Jahnke, A. McLachlan, J.J. Middelburg, P. Nielsen, F. Sanson, G. Taghon, W.V. Raaphorst, I. Webster, J. M. Weslawski, P. Wiberg, and B. Sundby, 2001. Permeable marine sediments: overturning and old paradigm. EOS, 82(11): 133-140
  11. Broecker W.S. and T.H. Peng, 1974. Gas exchange rates between air and sea. Tellus, 72: 248-254
  12. Burnett, W.C., H. Bokuniewicz, M. Huettel, W.S. Moore and M. Taniguchi, 2003. Groundwater and porewater inputs to the coastal zone. Biogeochemistry, 66: 3-33 https://doi.org/10.1023/B:BIOG.0000006066.21240.53
  13. de Beer, D., F. Wenzhofer, T.G. Ferdelman, S.E. Boehme, and M. Huettel, J.E.E. van Beusekom, M.E. Bottcher, N. Musat, and N. Dubilier, 2005. Transport and mineralization rates in North Sea sandy intertidal sediment, Sylt-Romo Basin, Wadden Sea. Limnol. Oceanogr., 50(1): 113-127 https://doi.org/10.4319/lo.2005.50.1.0113
  14. Ehrenhauss, S. and M. Huettel, 2004. Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments. J. Sea Res., 52: 179-197 https://doi.org/10.1016/j.seares.2004.01.004
  15. Epping, E.H.G., A. Khalili and R. Thar, 1999. Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles. Limnol. Oceanogr., 44(8): 1936-1948 https://doi.org/10.4319/lo.1999.44.8.1936
  16. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain size parameters. J. Sed. Pet., 27: 3-26 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  17. Frank, U., L. Polerecky, E. Precht, and M. Huettel, 2006. Wave tank study of particulate organic matter degradation in permeable sediments, Limnol. Oceangr., 51(2): 1084-1094 https://doi.org/10.4319/lo.2006.51.2.1084
  18. Gattuso, J.P., M. Frankignoulle, and R. Wollast, 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29: 405-434 https://doi.org/10.1146/annurev.ecolsys.29.1.405
  19. Glud, R.N., S. Forster, and M. Huettel, 1996. Influence of radial pressure gradients on solute exchange in stirred benthic chambers. Mar. Ecol. Prog. Ser., 141: 303-311 https://doi.org/10.3354/meps141303
  20. Hancke, K. and Glud, R.N., 2004. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquatic Microbial Ecology, 37: 256-281
  21. Huettel, M. and G. Gust, 1992. Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar. Ecol. Prog. Ser., 89: 253-267 https://doi.org/10.3354/meps089253
  22. Huettel, M., and A. Rusch, 2000. Transport and degradation of phytoplankton in permeable sediment, Limnol. Oceangr., 45(3): 543-549
  23. Huettel, M. and I.T. Webster, 2001. Porewater flow in permeable sediments, p. 144-179. In B.P. Boudreau and B.B. Jorgensen [eds.], The benthic boundary layer. Oxford Univ. Press
  24. Janssen, F., M. Huettel, and U. Witte, 2005a. Pore-water advection and solute fluxes in permeable marine sediments (I): Calibration and performance of the novel benthic chamber system Sandy. Limnol. Oceanogr., 50: 768-778 https://doi.org/10.4319/lo.2005.50.3.0768
  25. Janssen, F., M. Huettel, and U. Witte, 2005b. Pore-water advection and solute fluxes in permeable marine sediments (II): Benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol. Oceanogr., 50: 779-792 https://doi.org/10.4319/lo.2005.50.3.0779
  26. Kang, C. K., E. J Choy, S. Paik, H. Park, K. Lee, S. An, 2007. Contributions of primary organic matter sources to macroinvertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Mar. Ecol. Prog. Ser., 334: 131-143 https://doi.org/10.3354/meps334131
  27. Kuhl, M., R.N. Glud, H. Ploug and N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-coupling respiration in an epilithic cyanobacterial biofilm. J. Phyco., 32: 799-812 https://doi.org/10.1111/j.0022-3646.1996.00799.x
  28. Migne, A., N. Spilmont, and D. Davoult, 2004. In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France), Continental Shelf Research, 24: 1437-1449 https://doi.org/10.1016/j.csr.2004.06.002
  29. Polerecky, L., U. Franke, U. Werner, B. Grunwald, and D. de Beer, 2005. High spatial resolution measurement of oxygen consumption rates in permeable sediments. Limnol. Oceanogr.: Methods, 3: 75-85 https://doi.org/10.4319/lom.2005.3.75
  30. Precht, E. and M. Huettel, 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implication. Limnol., Oceanogr., 48(4): 1674-1684 https://doi.org/10.4319/lo.2003.48.4.1674
  31. Reimers, C.E., H.A. Stecher III, G.L. Taghon, C.M. Fuller, M. Huettel, A. Rusch, N. Ryckelynck, and C. Wild, 2004. In situ measurement of advective solute transport in permeable shelf sediments, Continental Shelf Research, 24: 183-201 https://doi.org/10.1016/j.csr.2003.10.005
  32. Revsbech, N.P. and B.B. Jorgensen, 1983. Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: capabilities and limitations of the method, Limnol. Oceanogr., 28: 749-756 https://doi.org/10.4319/lo.1983.28.4.0749
  33. Rusch, A. and M. Huettel, 2000. Advective particle transport into permeable sediments-evidence from experimental in an intertidal sandflat. Limnol. Oceanogr., 45: 525-533 https://doi.org/10.4319/lo.2000.45.3.0525
  34. Thamdrup, B., J.W. Hansen, and B.B. Jorgensen, 1998. Temperature dependence of aerobic respiration in a coastal sediment, FEMS Microbiol. Ecol., 25: 189-200 https://doi.org/10.1016/S0168-6496(97)00095-0
  35. Ullman, W.J. and R.C. Aller, 1982. Diffusion coefficients in near shore marine sediments. Limnol. Oceanogr., 27: 552-556 https://doi.org/10.4319/lo.1982.27.3.0552
  36. Werner, U., M. Billerbeck, L. Polerecky, U. Franke, M. Huettel, J.E.E. van Beusekom, and D. de Beer, 2006. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, German). Limnol. Oceanogr., 51(6): 2549-2563 https://doi.org/10.4319/lo.2006.51.6.2549
  37. Wieland, A. and M. Kuhl, 2000. Irradiance and temperature regulation of oxygenic photosynthesis and $O_{2}$ consumption in a hypersaline cyanobacterial mat. Mar. Biol., 137: 71-85 https://doi.org/10.1007/s002270000331