Thermotropic Liquid Crystalline Properties of Glucose Penta(cholesteryloxycarbonyl)alkanoates

글루코오스 펜타(콜레스테릴옥시카보닐)알카노에이트들의 열방성 액정 특성

  • Jeong, Seung-Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung Dae (Department of Polymer Science and Engineering, Dankook University)
  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Received : 2007.06.19
  • Accepted : 2007.08.17
  • Published : 2007.10.10

Abstract

The thermal and optical properties of glucose penta(cholesteryloxycarbonyl)alkanoates (CAGLn, n = 2~8, 10, the number of methylene units in the spacer) were investigated. All the CAGLn formed monotropic cholesteric phases with left-handed helical structures. CAGLn with n = 2 or 10, in contrast with CAGLn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the glucose chain. The isotropic-cholesteric transition point ($T_{ic}$) decreased with increasing n and showed no odd-even effect. The plot of transition entropy at $T_{ic}$ against n had a sharp negative inflection at n = 7. The optical pitches (${{\lambda}_m}^{\prime}$ s) of CAGLn with $3{\leq}n{\leq}8$ decreased with increasing temperature. However, the temperature dependence of the ${\lambda}_m$ of the derivatives exhibited pronounced dependence on n. The transitional properties and the temperature dependence of the ${\lambda}_m$ observed for CAGLn were discussed in terms of the differences in arrangement of the cholesteryl groups and the conformation of the molecules.

글루코오스 펜타(콜레스테릴옥시카보닐)알카노에이트들(CAGLn, n = 2~8, 10, 스페이서 중의 메틸렌 단위들의 수)의 열 및 광학 특성을 검토하였다. 모든 CAGLn은 좌측방향의 나선구조를 지닌 단방성 콜레스테릭 상들을 형성하였다. n이 2 혹은 10인 CAGLn은 $3{\leq}n{\leq}8$인 CAGLn과 달리 콜레스테릭 상의 전 구간에서 반사색깔을 나타내지 않았다. 이러한 사실은 콜레스테릴 그룹에 의한 나선의 비틀림력은 콜레스테릴 그룹과 글루코오스 사슬을 연결하는 스페이서의 길이에 민감하게 의존함을 시사한다. 액체 상에서 콜레스테릭 상으로의 전이온도($T_{ic}$)는 n이 증가함에 낮아지며 홀수-짝수 효과를 나타내지 않았다. $T_{ic}$에서의 엔트로피와 n을 도시한 그림상에는 n = 7에서 급격한 엔트로피의 감소가 관찰되었다. $3{\leq}n{\leq}8$인 CAGLn의 광학피치들(${{\lambda}_m}^{\prime}$ s)은 온도가 상승함에 따라 감소하였다. 그러나 유도체들의 ${\lambda}_m$의 온도의존성은 n에 현저하게 의존하였다. CAGLn에서 관찰되는 전이 특성들과 ${\lambda}_m$의 온도의존성을 콜레스테릴 그룹들의 배열과 분자의 입체형태의 차이의 견지에서 검토하였다.

Keywords

References

  1. J. W. Goodby, Liq. Cryst., 24, 25 (1998)
  2. M. Hein, R. Miethchen, D. Schwebisch, and C. Schick, Liq. Cryst., 27, 163 (2000) https://doi.org/10.1080/026782900202921
  3. M. Hein and R. Miethchen, Tetrahedron Lett., 39, 6679 (1998)
  4. B. J. Boyd, I. Krodkiewska, C. J. Drummond, and F. Crieser, Langmuir, 18, 597 (2002) https://doi.org/10.1021/la0014858
  5. J. H. Jung, G. John, K. Yoshida, and T. Shimizu, J. Am. Chem. Soc., 124, 10674 (2002) https://doi.org/10.1021/ja020752o
  6. N. L. Morris, R. G. Zimmermann, G. B. Jameson, A. W. Dalziel, P. M. Reuss, and R. G. Weiss, J. Am. Chem. Soc., 110, 2177 (1988) https://doi.org/10.1021/ja00215a029
  7. R. Mukkamala, C. L. Burn, Jr., R. M. Catchings III, and R. G. Weiss, J. Am. Chem. Soc., 118, 9498 (1996)
  8. A. N. Cammidge and R. J. Bushby, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spieses, and V. Vill, 2B, 693, Wiley-VCH, Weinheim-New York (1998)
  9. D. Blunk, K. Praefcke, and V. Vill, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spieses, and V. Vill, 2B, 305, Wiley-VCH, Weinheim-New York (1998)
  10. T. Kato, N. Mizoshita, and K. Kanie, Macromol. Rapid Commun., 22, 797 (2001) https://doi.org/10.1002/1521-3927(20010701)22:11<797::AID-MARC797>3.0.CO;2-T
  11. G. John, H. Minamikawa, M. Matsuda, and T. Shimizu, Liq. Cryst., 30, 747 (2003) https://doi.org/10.1080/0267829021000047516
  12. F. Dumoulin, D. Lafont, P. Boullanger, G. Mackenzie, G. H. Mehl, and J. W. Goodby, J. Am. Chem. Soc., 124, 13737 (2002) https://doi.org/10.1021/ja020396+
  13. P. Bault, P Gode, G. Goethals, J. W. Goodby, J. A. Haley, S. M. Kelly, G. H. Mehl, G. Ronco, and P. Villa, Liq. Cryst., 25, 31 (1998)
  14. C. Zur, A. O. Milla, and R. Miethchen, Liq. Cryst., 24, 695 (1998)
  15. A. M. van der Heijden, A. T. J. W. de Goede, F. van Rantwijk, and H. van Bekkum, Liq. Cryst., 27, 63 (2000) https://doi.org/10.1080/026782900203227
  16. J.-I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995)
  17. C. T. Imrie and G. R. Luckhurst, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spieses, and V. Vill, 2B, 801, Wiley-VCH, Weinheim-New York, (1998)
  18. P. A. Henderson and C. T. Imrie, Macromolecules, 38, 3307 (2005) https://doi.org/10.1021/ma0502304
  19. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 31, 58 (2007)
  20. G. R. Luckhurst, Macromol. Symp., 1, 96 (1995)
  21. P. A. Henderson, A. G. Cook, and C. T. Imrie, Liq. Cryst., 31, 1427 (2004) https://doi.org/10.1080/02678290412331298067
  22. C. V. Yelamaggad, M. Mathews, U. S. Hiremath, G. G. Nair, D. S. Shankar Rao, and S. Krishna Prasad, Liq. Cryst., 30, 899 (2003) https://doi.org/10.1080/0267829031000138587
  23. A. E. Blatch and G. R. Luckhurst, Liq. Cryst., 27, 775 (2000) https://doi.org/10.1080/026782900202264
  24. A. Del Campo, A. Meyer, E. Perez, and A. Bello, Liq. Cryst., 31, 109 (2004) https://doi.org/10.1080/0267829032000159105
  25. N. Laurent, D. Lafont, F. Dumoulin, P. Boullanger, G. Mackenzie, P. H. Kouwer, and J. W. Goodby, J. Am. Chem. Soc., 125, 15499 (2003) https://doi.org/10.1021/ja037347x
  26. S.-Y. Jeong and Y.-D. Ma, Chemical Materials (Dankook University), 3, 29 (2006)
  27. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 31, 356 (2007)
  28. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 30, 338 (2006)
  29. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol Symp., 99, 257 (1995)
  30. S.-Y. Jeong, J.-H. Jeong Y.-D. Ma, and Y. Tsujii, Polymer (Korea), 25, 279 (2001)
  31. J.-H. Kim, S.-Y. Jeong, and Y.-D. Ma, Polymer (Korea), 28, 92 (2004)
  32. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 30, 35 (2006) https://doi.org/10.1016/0032-3861(89)90379-0
  33. Y.-D. Ma and S.-Y. Jeong, Industrial Technology Research Paper (Dankook University), 6, 1 (2005)
  34. J. Kadokawa, Y. Shinmen, and S. Shoda, Macromol. Rapid Commum., 26, 103 (2005) https://doi.org/10.1002/marc.200400430
  35. T. Yamagishi, T. Fukuda, T. Miyamoto, Y. Yakoh, Y. Takashina, and J. Watanabe, Liq. Cryst., 10, 467 (1991) https://doi.org/10.1080/02678299108036436
  36. S.-Y. Jeong and Y.-D. Ma, Polymer (Korea), 31, 37 (2007)
  37. T. Pfeutter, D. Hanft, and P. Strohiegl, Liq. Cryst., 29, 1555 (2002) https://doi.org/10.1080/0267829021000034817
  38. F. Brandenburger, B. Mattes, K. Seifert, and P. Strohriegl, Liq. Cryst., 28, 1035 (2001) https://doi.org/10.1080/02678290110039921
  39. S.-Y. Jeong and Y.-D. Ma, unpublished result
  40. V. Percec and C. Pugh, Side Chain Liquid Crystal Polymers, ed. C. B. McArdle, 30, Chapmann and Hall, Inc., New York (1989)
  41. C. Pugh and A. L. Kiste, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, and H.-W. Spiess, V. Vill, 3, 123, Wiley-VCH, Weinheim-New York (1998)
  42. A. A. Crag and C. T. Imrie, Macromolecules, 28, 3617 (1995)
  43. A. A. Crag and C. T. Imrie, Macromolecules, 32, 6215 (1999)
  44. T. Yamaguchi, T. Asada, H. Hayashi, and N. Nakamura, Macromolecules, 22, 1141 (1989) https://doi.org/10.1021/ma00193a024
  45. V. Perce, A. D. Asandei, D. H. Hill, and D. Crawford, Macromolecules, 32, 2597 (1999)
  46. B. Q. Chen, A. Kameyama, and T. Nishikubo, Macromolecules, 32, 6485 (1999)
  47. X. L. Piao, J.-S. Kim, Y.-K. Yun, J.-I. Jin, and S.-K. Hong, Macromole- cules, 30, 2294 (1997)
  48. S.-W. Cha, J.-I. Jin, D.-C. Kim, and W.-C. Zin, Macromolecules, 34, 5432 (2001)
  49. E. M. Barral II, Liquid Crystals, ed. F. D. Saeva, 335, Marcel Dekker, Inc., New York (1979)
  50. R. S. Porter, Mol. Cryst. Liq. Cryst., 8, 27 (1969) https://doi.org/10.1080/15421406908084896
  51. E.-D. Do, K.-N. Kim, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 33, 511 (2006)
  52. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, J. Mater. Chem., 6, 1469 (1996)
  53. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, Mol. Cryst. Liq. Cryst., 411, 193 (2004) https://doi.org/10.1080/15421400490435035
  54. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, Liq. Cryst., 28, 881 (2001) https://doi.org/10.1080/02678290110041991
  55. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, Liq. Cryst., 27, 1515 (2000) https://doi.org/10.1080/026782900750018681
  56. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, Liq. Cryst., 18, 843 (1995)
  57. K.-N. Kim, E.-D. Do, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 32, 229 (2005)
  58. A. Takada, N. Ide, T. Fukuda, and T. Miyamoto, Liq. Cryst., 19, 441 (1995)
  59. T. Yamagishi, T. Fukuda, and T. Miyamoto, Y. Yokoh, Y. Takashina, and J. Watanabe, Liq. Cryst., 10, 467 (1991) https://doi.org/10.1080/02678299108036436
  60. S. Weidner, D. Wolff, and J. Springer, Liq. Cryst., 20, 587 (1996)
  61. A. T. M. Marcelis, A. Koudijs, and E. J. R. Sudhalter, Thin Solid Films, 284-285, 308 (1996) https://doi.org/10.1016/S0040-6090(95)08324-3