Cotesia plutellae Bracovirus Genome and Its Function in Altering Insect Physiology

  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University) ;
  • Choi, Jae-Young (Department of Entomology, School of Agricultural Biotechnology, Seoul National University) ;
  • Je, Yeon-Ho (Department of Entomology, School of Agricultural Biotechnology, Seoul National University)
  • Published : 2007.09.30

Abstract

Polydnavirus is a group of animal DNA virus mutually associated with some ichneumonoid wasp. Its relatively large size of genome has been considered as a major source of the parasitoid function to manipulate developmental and immunological processes of target parasitized insects. Cotesia plutellae bracovirus (CpBV) is a polydnavirus derived from C. plutellae, which parasitizes the diamondback moth, Plutella xylostella. Parasitized P. xylostella exhibits altered physiological symptoms in development and immune reactions. Though several other parasitic factors such as ovarian proteins, venom, and teratocytes are identified, CpBV has been more focused on elucidating various host physiological alterations occurring due to the parasitism, which has driven the CpBV genome project. CpBV attains a typical bracovirus structure by its single unit membrane envelope, in which multiple nucleocapsids are enclosed. Its genome DNAs are segmented and located on the genome of C. plutellae. Its replication begins at adult tissue development during pupal stage. An apparent genome size is 471 kb estimated from 27 segments separated on 5% agarose gel. A current work on the genome has been completely sequenced 24 genomic segments and analyzed their genomic structure. The aggregated genome size is 351,299 bp long and exhibits an average GC content of approximately 34.6%. Average coding density is about 32.3% and 125 putative open reading frames are predicted. Though more than half (52.5%) of predicted genes are annotated as hypothetical, the annotated CpBV genes share amino acid sequence homologies with those of other bracoviral genomes. The annotated genes are classified into the known bracoviral families, in which a family of protein tyrosine phosphatase is the largest including 36 ORFs, suggesting a significant role during parasitization. In addition, 8 and 7 ORFs encode $I{\kappa}{\beta}-like$ and EP1-like, respectively. Some predicted genes are known only in Cotesia-associated bracoviral genomes. Finally, two homologous genes, $CpBV15{\alpha}/{\beta}$, are unique in CpBV genome, which are not matched to any other known polydnaviral genes. Their homology with malarian circumsporozoite toxin and eukaryotic translation inhibition factors suggests their function in host translation inhibitory factor. This review discusses CpBV genes on their putative physiological functions based on the molecular interactions between the host-parasite.

Keywords

References

  1. Adams, J.H., D.E. Hudson, M. Torii, G.E. Ward, T.E. Wellems, M. Aikawa and L.H. Miller. 1990. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 63: 141-153 https://doi.org/10.1016/0092-8674(90)90295-P
  2. Arnold, J.W. and C.F. Hinks. 1982. Haemopoiesis in Lepidoptera. III. A note on the multiplication of spherule cells and granular haemocytes. Can. J. Zool. 61: 275-277 https://doi.org/10.1139/z83-035
  3. Asgari, S., M. Hellers and O. Schmidt. 1996. Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J. Gen. Virol. 77: 2653-2662 https://doi.org/10.1099/0022-1317-77-10-2653
  4. Asgari, S. and O. Schmidt. 2002. A coiled-coil region of an insect immune suppressor protein is involved in binding and uptake by hemocytes. Insect Biochem. Mol. Biol. 32: 497-504 https://doi.org/10.1016/S0965-1748(01)00127-8
  5. Asgari, S., O. Schmidt and U. Theopold. 1997. A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppressor. J. Gen. Virol. 78: 3061-3070 https://doi.org/10.1099/0022-1317-78-11-3061
  6. Bae, S. and Y. Kim. 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. 138A: 39-44
  7. Baldwin, M.R. and J.T. Barbieri. 2005. The type III cytotoxins of Yersinia and Pseudomonas aeruginosa that modulate the actin cytoskeleton. Curr. Top. Microbiol. Immunol. 291: 147-166 https://doi.org/10.1007/3-540-27511-8_8
  8. Basio, N.A. and Y. Kim. 2006. Additive effect of teratocytes and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31: 341-347 https://doi.org/10.1111/j.1365-3032.2006.00524.x
  9. Beck, M. and M.R. Strand. 2003. RNAi interference silences Microplitis demolitor bracovirus genes and implicates glc 1.8 in disruption of adhesion in infected host cells. Virology 314: 521-535 https://doi.org/10.1016/S0042-6822(03)00463-X
  10. Beck, M. and M.R. Strand. 2005. Glc1.8 from Microplitis demolitor bracovirus induces a loss of adhesion and phagocytosis in insect High Five and S2 cells. J. Virol. 79: 1861-1870 https://doi.org/10.1128/JVI.79.3.1861-1870.2005
  11. Beckage, N.E. 1998. Parasitoids and polydnaviruses - an unusual mode of symbiosis in which a DNA virus causes host insect immunosuppression and allows the parasitoid to develop. BioScience 48: 305-311 https://doi.org/10.2307/1313357
  12. Beckage, N.E. 1993. Games parasites play: the dynamic roles of proteins and peptides in the relationship between parasite and host. pp. 25-57, in Parasites and pathogens of insects, Vol. 1, Parasites, Eds. N.E. Beckage, S.N. Thompson and B.A. Federici. Academic Press, New York
  13. Bliska, J.B. and D.S. Black. 1995. Inhibition of the Fc receptormediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infect. Immun. 63: 681-685
  14. Bliska, J.B., K. Guan, J.E. Dixon and S. Falkow. 1991. Tyrosine phosphatase hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl. Acad. Sci. USA 88: 1187-1191
  15. Cai, J., G. Ye and C. Hu. 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparium (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol. 50: 315-322 https://doi.org/10.1016/j.jinsphys.2004.01.007
  16. Chen, Y.P., P.B. Taylor, M. Shapiro and D.E. Gundersen-Rindal. 2003. Quantitative expression analysis of a Glyptapanteles indiensis polydnavirus protein tyrosine phosphatase gene in its natural lepidopteran host, Lymantria dis par. Insect Mol. Biol. 12: 271-280 https://doi.org/10.1046/j.1365-2583.2003.00411.x
  17. Choi, J.Y., J.Y. Rho, J.N. Kang, H.J. Shim, S.D. Woo, B.R. Jin, M.S. Li and Y.H. Je. 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332: 487-493 https://doi.org/10.1016/j.bbrc.2005.04.146
  18. Clark, K.D., L.L. Pech and M.R. Strand. 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272: 23440-23447 https://doi.org/10.1074/jbc.272.37.23440
  19. Clark, K.D., B.F. Volkman, H. Thoetkiattikul, Y. Hayakawa and M.R Strand. 2001. N-terminal residues of plasmatocytespreading peptide possess specific determinants required for biological activity. J. Biol. Chem. 276: 37431-37435 https://doi.org/10.1074/jbc.M105235200
  20. Clem, R.J., M. Robson and L.K. Miller. 1994. Influence of infection route on the infectivity of baculovirus mutants lacking the apoptosis-inhibiting gene p35 and the adjacent gene p94. J. Virol. 68: 6759-6762
  21. Cui, L., A. Soldevila and B.A. Webb. 1997. Expression and hemocyte-targeting of a Campoletis sonorensis polydnavirus cysteine-rich gene in Heliothis virescens larvae. Arch. Insect Biochem. Physiol. 36: 251-271 https://doi.org/10.1002/(SICI)1520-6327(1997)36:4<251::AID-ARCH2>3.0.CO;2-V
  22. Cui, L. and B.A. Webb. 1997. Homologous sequences in the Campoletis sonorensis polydnavirus genome are implicated in replication and nesting of the W segment family. J. Virol. 71: 8504-8513
  23. Dahlman, D.L., E.J. Schepers, T. Schepers, R.L. Rana, F.A. DiLina and B.A. Webb. 2003. A teratocyte gene from a parasitic wasp that is associated with inhibition of insect growth and development inhibits host protein synthesis. Insect Mol. Biol. 12: 527-534 https://doi.org/10.1046/j.1365-2583.2003.00439.x
  24. Dong, K., D. Zhang and D.L. Dahlman. 1996. Down-regulation of juvenile hormone esterase and arylphorin production in Heliothis virescens larvae parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol. 32: 237-248 https://doi.org/10.1002/(SICI)1520-6327(1996)32:2<237::AID-ARCH7>3.0.CO;2-V
  25. Dushay, M.S., B. Asling and D. Hultmark. 1996. Origins of immunity: Relish, a Compound Rei-like genes in the antibacterial defense of Drosophila. Proc Natl. Acad. Sci. USA 93: 10343-10347
  26. Edson, K.M., S.B. Vinson, D.B. Stoltz and M.D. Summers. 1980. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid's host. Science 211: 582-583 https://doi.org/10.1126/science.7455695
  27. Elrod-Erickson, M., S. Mishra and D. Schneider. 2000. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10: 781-784 https://doi.org/10.1016/S0960-9822(00)00569-8
  28. Engstrom, Y., L. Kadalayil, S.C. Sun, C. Samakovlis, D. Hultmark and I. Faye. 1993. k$\beta$-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232: 327-333 https://doi.org/10.1006/jmbi.1993.1392
  29. Espagne, E., C. Dupuy, E. Huguet, L. Cattolico, B. Provost, N. Martins, M. Poirie, G. Periquet and J.M. Drezen. 2004. Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 286-289
  30. Fathpour, H. and D.L. Dahlman. 1995. Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein content of the host, Heliothis virescens. Arch. Insect Biochem. Physiol. 28: 33-48 https://doi.org/10.1002/arch.940280104
  31. Frevert, U., M.R. Galinski, F.U. Hugel, N. Allon, H. Schreier, S. Smulevitch, M. Shakibaei and P. Clavijo. 1998. Malaria circumsporozoite protein inhibits protein synthesis in mammalian cells. EMBO J. 17: 3816-3826 https://doi.org/10.1093/emboj/17.14.3816
  32. Friedman, R. and A.L. Hughes. 2006. Pattern of gene duplication in the Cotesia cangregata bracovirus. Infect. Gen. Evol. 6: 315-322 https://doi.org/10.1016/j.meegid.2005.10.001
  33. Friesen, P.D. and L.K. Miller. 1987. Divergent transcription of early 35- and 94-kilodalton protein genes encoded by the HindIll K genome fragment of the baculovirus Autographa califarnica nuclear polyhedrosis virus. J. Virol. 61: 2264-2272
  34. Galibert, L., J. Rocher, M. Ravallec, M. Duonor-Cerutti, B.A. Webb and A.N. Volkoff. 2003. Two Hyposoter didymator ichnovirus genes expressed in the lepidopteran host encode secreted or membrane-associated serine and threonine rich proteins in segments that may be nested. J. Insect Physiol. 49: 441-451 https://doi.org/10.1016/S0022-1910(03)00061-1
  35. Ghosh, D. and P. Chakraborty. 2002. Involvement of protein tyrosine kinases and phosphatases in uptake and intracellular replication of virulent and avirulent Leishmania donovani promastigates in mouse macrophage cells. Biosci. Rep. 22: 395-406 https://doi.org/10.1023/A:1020914024544
  36. Ghosh, S., M.J. May and E.B. Kopp. 1998. NF-$\kappa$B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260 https://doi.org/10.1146/annurev.immunol.16.1.225
  37. Gill, T.A., A. Fath-Goodin, I.I. Maiti and B.A. Webb. 2006. Potential uses of cys-motif and other polydnavirus genes in biotechnology. Adv. Virus Res. 68: 393-426 https://doi.org/10.1016/S0065-3527(06)68011-1
  38. Glatz, R., H.L.S. Roberts, D. Li, M. Sarjan, U.H. Theopold, S. Asgari and O. Schmidt. 2004. Lectin-induced haemocyte inactivation in insects. J. Insect Physiol. 50: 955-963 https://doi.org/10.1016/j.jinsphys.2004.07.009
  39. Glatz, R., O. Schmidt and S. Asgari. 2003. Characterization of a novel protein with homology to C-type lectins expressed by the Cotesia rubecula bracovirus in larvae of the lepidopteran host, Pieris rapae. J. Biol. Chem. 278: 19743-19750 https://doi.org/10.1074/jbc.M301396200
  40. Harwood, S.H. and N.E. Beckage. 1994. Purification and characterization of an early-expressed polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregate. Insect Biochem. Mol. Biol. 24: 685-698 https://doi.org/10.1016/0965-1748(94)90056-6
  41. Ibrahim, A.M.A., J.Y. Choi, and Y.H. Je and Y. Kim. 2005. Structure and expression profiles of two putative Cotesia plutellae bracovirus genes (CpBV-H4 and CpBV-E94$\alpha$) in parasitized Plutella xylostella. J. Asia-Pacific Entomol. 8: 359-366 https://doi.org/10.1016/S1226-8615(08)60258-7
  42. Ibrahim, A.M., J.Y. Choi, Y.H. Je and Y. Kim. 2007. Protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus: sequence analysis, expression profile, and a possible biological role in host immunosuppression. Dev. Comp. Immunol. (in press)
  43. Ibrahim, A.M.A. and Y. Kim. 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 52: 943-950 https://doi.org/10.1016/j.jinsphys.2006.06.001
  44. Ibrahim, A.M.A. and Y. Kim. 2007. Protein tyrosine phosphatases of Cotesia plutellae bracovirus inhibit insect cellular immune responses. Naturwissenschaften (submitted)
  45. Jung, S., M. Kwoen, J.T. Choi, Y.H. Je and Y. Kim. 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia-Pacific Entomol. 9: 255-263 https://doi.org/10.1016/S1226-8615(08)60300-3
  46. Kappler, C., M. Meister, M. Lagueux, E. Gateff, J.A. Hoffmann and J.M. Reichhart. 1993. Insect immunity. Two 17 bp repeats nesting a k$\beta$-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteriachallenged Drosophila. EMBO J. 12: 1561-1568
  47. Kim, Y. 2005. Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. Arch. Insect Biochem. Physiol. 59: 230-244 https://doi.org/10.1002/arch.20074
  48. Kim, Y. 2006. Polydnavirus and its novel application to insect pest control. Kor. J. Appl. Entomol. 45: 241-259
  49. Kim, Y., S. Bae and S. Lee. 2004. Polydnavirus replication and ovipositional habit of Cotesia plutellae. Kor. J. Appl. Entomol. 43: 225-231
  50. Kim, Y., N.A. Basio, A.M.A. Ibrahim and S. Bae. 2006. Gene structure of Cotesia plutellae bracovirus (CpBV)-1kB and its expression pattem in the parasitized diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 45: 15-24
  51. Kim, Y. and Y. Son. 2006. Parasitism of Cotesia plutellae alters morphological and biochemical characters of diamondback moth, Plutella xylostella. J. Asia-Pacific Entomol. 9: 37-42 https://doi.org/10.1016/S1226-8615(08)60273-3
  52. Kroemer, J.A. and B.A. Webb. 2004. Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu. Rev. Entomol. 49: 431-456 https://doi.org/10.1146/annurev.ento.49.072103.120132
  53. Lavine, M.D. and N.E. Beckage. 1995. Polydnaviruses: potent mediators of host insect immune dysfunction. Parasitol. Today 11: 368-378 https://doi.org/10.1016/0169-4758(95)80005-0
  54. Lavine, M.D. and M.R. Strand. 2003. Hemocytes from Pseudoplusia includens express multiple alpha and beta integrin subunits. Insect Mol. Biol. 12: 441-452 https://doi.org/10.1046/j.1365-2583.2003.00428.x
  55. Le, N.T., S. Asgari, K. Amaya, F.F. Tan and N.E. Beckage. 2003. Persistence and expression of Cotesia congregata polydnavirus in host larvae of the tobacco homworm, Manduca sexta. J. Insect Physiol. 49: 533-543 https://doi.org/10.1016/S0022-1910(03)00052-0
  56. Lee, K., S. Cho, H. Lee, J.Y. Choi, Y.H. Je and Y. Kim. 2005. Gene expression of Cotesia plutellae bracovirus EP1-like protein (CpBV-ELP1) in parasitized diamondback moth, Plutella xylostella. J. Asia-Pacific Entomol. 8: 249-255 https://doi.org/10.1016/S1226-8615(08)60242-3
  57. Lee, S. and Y. Kim. 2004. Juvenile hormone esterase of diamondback moth, Plutella xylostella, and parasitism of Cotesia plutellae. J. Asia-Pacific Entomol. 7: 283-287 https://doi.org/10.1016/S1226-8615(08)60228-9
  58. Lee, S. and Y. Kim. 2007. Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. Arch. Insect Biochem. Physiol. (In press)
  59. Levin, D.M., L.N. Breuer, S. Zhung, S.A. Anderson, J.B. Nardi and M.R. Kanost. 2005. A hemocyte-specific integrin required for hemocytic encapsulation in the tobacco homworm, Manduca sexta. Insect Biochem. Mol. Biol. 35: 369-380 https://doi.org/10.1016/j.ibmb.2005.01.003
  60. Li, X. and B.A. Webb. 1994. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J. Virol. 68: 7482-7489
  61. Madanagopal, N. and Y. Kim. 2006. Parasitism by Cotesia glomerata induces immunosuppression of Pieris rapae: effects of ovarian protein and polydnavirus. J. Asia-Pacific Entomol. 9: 339-346 https://doi.org/10.1016/S1226-8615(08)60312-X
  62. Madanagopal, M. and Y. Kim. A putative protein translation inhibitory factor encoded in Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J. Insect Physiol. (submitted)
  63. Malva, C., P. Varricchio, P. Falabella, R. La Scaleia, F. Graziani and F. Pennacchio. 2004. Physiological and molecular interaction in the host-parasitoid system Heliothis virescens-Toxoneuron nigriceps: current status and future perspectives. Insect Biochem. Mol. Biol. 34: 177-183 https://doi.org/10.1016/j.ibmb.2003.09.008
  64. Manfruelli, P., J.M. Reichhart, R. Steward, J.A. Hoffmann and B. Lemaitre. 1999. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rei proteins Dorsal and DIF. EMBO J. 18, 3380-3391 https://doi.org/10.1093/emboj/18.12.3380
  65. Martin, S.J., S.V. Lennon, A.M. Bonham and T.G. Cotter. 1990. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J. Immunol. 145: 1859-1867
  66. Miller, L.H., S.J. Mason, D.F. Clyde and M.H. McGinniss. 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295: 302-304 https://doi.org/10.1056/NEJM197608052950602
  67. Mooney, D.J., R. Langer and D.E. Ingber. 1995. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. J. Cell Sci. 108: 2311-2320
  68. Mustelin, T., T. Vang and N. Bottini. 2005. Protein tyrosine phosphatases and the immune response. Nature Rev. 5: 43-57 https://doi.org/10.1038/nri1530
  69. Nakahara, Y., Y. Kanamori, M. Kiuchi and M. Kamimura. 2003. In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J. Insect Physiol. 49: 907-916 https://doi.org/10.1016/S0022-1910(03)00149-5
  70. Pazin, M. and J. Kadonaga. 1997. What's up and down with histone deacetylation and transcription? Cell 89: 325-328 https://doi.org/10.1016/S0092-8674(00)80211-1
  71. Pech, L.L. and M.R. Strand. 1996. Granular cells are required for encapsulation of foreign targets by insect haemocytes. J. Cell Sci. 109: 2053-2060
  72. Provost, B., P. Varricchio, E. Arana, E. Espagne, P. Falagella, E. Hughuet, R. L. Scaleia, L. Cattolico, M. Poirie, C. Malva, J.A. Olszewski, F. Pennacchio and J.M. Drezen. 2004. Bracoviruses contain a large multigene family coding for protein tyrosine phosphatases. J. Virol. 78: 13090-13103 https://doi.org/10.1128/JVI.78.23.13090-13103.2004
  73. Quicke, D.L.J. 1997. Parasitic wasps. Chapman and Hall, London
  74. Quicke, D.L.J., M.G. Fitton, D.G. Notton, G.R. Broad and K. Dolphin. 2000. Phylogeny of the subfamilies of lchneumonidae (Hymenoptera): a simultaneous molecular and morphological analysis. pp. 74-83, in Hymenoptera: evolution, biodiversity and biological control, Eds. A.D. Austin and M. Dowton. CSIRO, Collingwood, Australia
  75. Ratcliffe, N.A., A.F. Rowley, S.W. Fitzgerald and C.P. Rhodes. 1985. Invertebrate immunity: basic concepts and recent advances. IntI. Rev. Cytol. 97: 183-350 https://doi.org/10.1016/S0074-7696(08)62351-7
  76. Rivkin, H, J.A. Kroemer, A. Bronshtein, E. Belausov, B.A. Webb and N. Chejanovsky. 2006. Response of immunocompetent and immunosuppressed Spodoptera littoralis larvae to baculovirus infection. J. Gen. Virol. 87: 2217-2225 https://doi.org/10.1099/vir.0.81918-0
  77. Schmidt, O., R.V. Glatz, S. Asgari and H.L. Roberts. 2005. Are insect immune suppressors driving cellular uptake reactions? Arch. Insect Biochem. Physiol. 60: 153-158 https://doi.org/10.1002/arch.20111
  78. Shelby, K., L. Cui and B.A. Webb. 1998. Polydnavirusmediated inhibition of lysozyme gene expression and the antibacterial response. Insect Mol. Biol. 7: 265-272 https://doi.org/10.1111/j.1365-2583.1998.00071.x
  79. Shelby, K and B.A. Webb. 1994. Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. J. Gen. Virol. 75: 2285-2292 https://doi.org/10.1099/0022-1317-75-9-2285
  80. Shelby, K. and B.A. Webb. 1997. Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochem. Mol. Biol. 27: 263-270 https://doi.org/10.1016/S0965-1748(96)00095-1
  81. Song, S., J.Y. Choi, Y.H. Je and Y. Kim. 2007. Two Pseudogenes of Cotesia plutellae Bracovirus in Parasitized Diamondback Moth, Plutella xylostella. J. Asia-Pacific Entomol. (In press) https://doi.org/10.1016/S1226-8615(08)60342-8
  82. Stettler, P., T. Trenczek, T. Wyler, R. Pfister-Wilhelm and B. Lanzrein. 1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J. Insect Physiol. 44: 817-831 https://doi.org/10.1016/S0022-1910(98)00014-6
  83. Stoltz, D.B. 1993. The PDV life cycle. pp. 167-187, in Parasites and pathogens of insects, Vol. 1, Parasites, Eds. S.N. Thompson, B.A. Federici and N.E. Beckage. Academic Press, San Diego, CA
  84. Strand, M.R., M.H. Beck, M.D. Lavine and K.D. Clark. 2006. Microplitis demolitor bracovirus inhibits phagocytosis by hemocytes from Pseudoplusia includens. Arch. Insect Biochem. Physiol. 61: 134-145 https://doi.org/10.1002/arch.20107
  85. Strand, M.R., Y. Hayakawa and K.D. Clark. 2000. Plasmatocyte spreading peptide (PSP1) and growth blocking peptide (GBP) are multifunctional homologs. J. Insect Physiol. 46: 817-824 https://doi.org/10.1016/S0022-1910(99)00171-7
  86. Strand, M.R., D.J. McKenzie, V. Grassl, B.A. Dover and J.M. Aiken. 1992. Persistence and expression of Microplitis demolitor PDV in Pseudoplusia includens. J. Gen. Virol. 73: 1627-1635 https://doi.org/10.1099/0022-1317-73-7-1627
  87. Strand, M.R. and L.L. Pech. 1995a. Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens. J. Gen. Virol. 76: 283-291 https://doi.org/10.1099/0022-1317-76-2-283
  88. Strand, M.R. and L.L. Pech. 1995b. Immunological basis for comparability in parasitoid-host relationships. Ann. Rev. Entomol. 40: 31-56 https://doi.org/10.1146/annurev.en.40.010195.000335
  89. Tanaka, K., H. Matsumoto and Y. Hayakawa. 2002. Detailed characterization of polydnavirus immunoevasive proteins in an endoparasitoid wasp. Eur. J. Biochem. 269: 2557-2566 https://doi.org/10.1046/j.1432-1033.2002.02922.x
  90. Tanaka, K., S. Tsuzuki, H. Matsumoto and Y. Hayakawa. 2003. Expression of Cotesia kariyai polydnavirus genes in lepidopteran hemocytes and Sf9 cells. J. Insect Physiol. 49: 433-440 https://doi.org/10.1016/S0022-1910(03)00060-X
  91. Teramoto, T. and T. Tanaka. 2004. Mechanism of reduction in the number of the circulating hemocytes in the Pseudaletia separata host parasitized by Cotesia kariyai. J. Insect Physiol. 50: 1103-1111 https://doi.org/10.1016/j.jinsphys.2004.08.005
  92. Theihnann, D.A. and M.D. Summers. 1986. Molecular analysis of Campoletis sonorensis virus DNA in the lepidopteran host Heliothis virescens. J. Gen. Virol. 67: 1961-1969 https://doi.org/10.1099/0022-1317-67-9-1961
  93. Theilmann, D.A. and M.D. Summers. 1987. Physical analysis of the Campoletis sonorensis virus multipartite genome and identification of a family of tandemly repeated elements. J. Virol. 61: 2589-2598
  94. Thoetkiattikul, H., M.H. Beck and M.R. Strand. 2005. Inhibitor $\kappa$B-like proteins from a polydnavirus inhibit NF-$\kappa$B activation and suppress the insect immune response. Proc. Natl. Acad. Sci. USA 102: 11426-11431
  95. Tolia, N.H., E.J. Enemark, B.K. Sim and L. Joshua-Tor. 2005. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122: 183-193 https://doi.org/10.1016/j.cell.2005.05.033
  96. Turnbull, M.W., S.B. Martin and B.A. Webb. 2004. Quantitative analysis of hemocyte morphological abnormalities associated with Campoletis sonorensis parasitization. J. Insect Sci. 4: 11-25
  97. Turner, B.M. 1991. Histone acetylation and control of gene expression. J. Cell Sci. 99: 13-20
  98. Wallach, D. 1984. Preparations of Iymphotoxin induce resistance to their own cytotoxic effect. J. Immunol. 132: 2464-2469
  99. Walzer, T., L. Galibert and T. De Smedt. 2005. Poxvirus semaphoring A39R inhibits phagocytosis by dendritic cells and neutrophils. Eur. J. Immunol. 35: 391-398 https://doi.org/10.1002/eji.200425669
  100. Wang, Y., H. Jiang and M. Kanost. 1999. Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. Insect Biochem. Mol. Biol. 29: 1075-1086 https://doi.org/10.1016/S0965-1748(99)00086-7
  101. Webb, B.A., N.E. Beckage, Y. Hayakawa, P.J. Krell, B. Lanzrein, D.B. Stoltz, M.R. Strand and M.D. Summers. 2000. Polydnaviridae. pp. 253-260, in Virus taxonomy, Eds. M.H.V van Regenmortel, C.M. Fauquet, D.H.L. Bishop, E.B. Carstens, M.K. Estes, S.M. Lemon, J. Maniloff, M.A. Mayo, D.J. McGeoch, C.R. Pringle and R.B. Wickner. Academic Press, New York
  102. Webb, B.A. and L. Cui. 1998. Relationships between polydnavirus genomes and viral gene expression. J. Insect Physiol. 44: 785-793 https://doi.org/10.1016/S0022-1910(98)00011-0
  103. Webb, B.A. and M.R. Strand. 2005. The biology and genomics of polydnaviruses. pp. 323-360, in Comprehensive molecular insect science, Eds. L.I. Gilbert, K. Iatrou and S.S. Gill. Elsevier, New York
  104. Webb, B.A., M.R. Strand, S.E. Dickey, M.H. Beck, R.S. Hilgarth, W.E. Barney, K. Kadash, J.A. Kroemer, K.G. Lindstrom, W. Rattanadechakul, K.S. Shelby, H. Thoetkiattikul, M.W. Turnbull and R.A. Witherell. 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347: 160-174 https://doi.org/10.1016/j.virol.2005.11.010
  105. Whitfield, J.B. and S. Asgari. 2003. Virus or not? Phylogenetics of polydnaviruses and their wasp carriers. J. Insect Physiol. 49: 397-405 https://doi.org/10.1016/S0022-1910(03)00057-X
  106. Wyder, S., A. Tschannen, A. Hochuli, A. Gruber, V. Saladin, S. Zumbach and B. Lanzrein. 2002. Characterization of Chelonus inanitus polydnavirus segments: sequences and analysis, excision site and demonstration of clustering. J. Gen. Virol. 83: 247-256 https://doi.org/10.1099/0022-1317-83-1-247
  107. Wyler, T. and B. Lanzrein. 2003. Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. 2. Ultrastructural analysis of calyx cell development, virion formation and release. J. Gen. Virol. 84: 1151-1163 https://doi.org/10.1099/vir.0.18830-0
  108. Wyler-Duda, P., V. Bernard, M. Stadler, D. Suter and D. Schumperli. 1997. Histone H4 mRNA from the nematode Ascaris lumbricoides is cis-spliced and polyadenylated. Biochim. Biophys. Acta 1350: 259-261 https://doi.org/10.1016/S0167-4781(96)00235-7
  109. Yu, R., Y. Chen, X. Chen, F. Huang, Y. Lou and S. Liu. 2007. Effects of venom/calyx fluid from the endoparasitic wasp Cotesia plutellae on the hemocytes of its host Plutella xylostella in vitro. J. Insect Physiol. 53: 22-29 https://doi.org/10.1016/j.jinsphys.2006.09.011