DOI QR코드

DOI QR Code

Effects of Chongkukjang Intake on Lipid Metabolism and Liver Function in Alcoholic Fatty Liver Rats

청국장식이가 알코올성지방간 쥐의 지질대사 및 간 기능개선에 미치는 영향

  • 이은희 (인하대학교 식품영양학과) ;
  • 천종희 (인하대학교 식품영양학과)
  • Published : 2009.11.30

Abstract

This study was performed to investigate the effect of chongkukjang intake on lipid metabolism and liver function in alcoholic fatty liver rats. Thirty-five 7-weeks old Spargue-Dawley male rats were used as experimental animals. After inducing alcoholic fatty liver, rats were divided into two groups and fed ethanol+casein diet (ECD) or ethanol+chongkukjang diet (EChD). At 10th, 20th and 30th days of the feeding experimental diet, rats were sacrificed to get blood and liver samples for analysis of blood lipids, lipid peroxides, antioxidative enzymes and biochemical indices of liver function. The mean food intake was not significantly different between ECD and EChD groups. Daily weight again of EChD group was significantly higher than that of ECD group at days 20 and 30. Serum total lipid, triglyceride and total cholesterol of ECD group were significantly higher than those of EChD group, while HDL-cholesterol was significantly higher in EChD group. Liver TBARS level of ECD group was significantly higher than that of EChD group. However, liver conjugated diene level was significantly higher in ECD group only at day 10. SOD, CAT and GPx activities of EChD group were significantly higher than those of ECD group at days 20 and 30. In the indices of liver function, GOT and GPT of ECD group were significantly higher than those of EChD group at day 10. LDH was significantly higher in ECD group. γ-GTP was significantly higher in ECD group only at day 20. Serum alcohol concentration of ECD group was significantly higher than that of EChD group at day 30. ADH and ALDH activities of EChD group were significantly higher than those of ECD group at day 30. Therefore, chongkukjang intake seems to give a beneficial effect on improving lipid metabolism and liver function by increasing HDL-cholesterol level, antioxidative enzyme activites, alcohol enzyme activities and decreasing serum lipids, liver TBARS and conjugated diene.

본 연구는 만성적인 알코올 섭취로 유발된 알코올성지방간 쥐에서 청국장식이가 지질대사 및 간 기능개선에 미치는 영향에 대해 알아보았다. 실험동물은 생후 7주령된 Sprague Dawley계 수컷 흰쥐 35마리에게 30일간 에탄올이 첨가된 액체식이를 공급하여 알코올성지방간을 유발시킨 후 다시 실험동물을 에탄올+카제인식이군(ECD)과 에탄올+청국장식이군(EChD)으로 나누어 각각 총 열량의 36%에 해당하는 에탄올이 함유된 액체 형태의 실험식이를 제공하였다. 실험식이 제공 후 10, 20, 30일째에 각각 혈액과 간을 수집하여 혈액의 지질수준, 간 조직 내 지질과산화물 수준과 그와 관련된 효소의 활성도 및 간 기능 지표 분석에 사용하였다. 실험결과, 식이섭취량은 두 식이군간 유의한 차이를 나타내지 않았고, 일일 평균체중증가량은 각 실험식이를 공급한 20일과 30일에서 EChD군이 ECD군보다 유의하게 높았다. 또한 ECD군은 모든 실험기간 동안 알코올성지방간 상태를 보였으나, EChD군은 10일에서만 지방간 상태를 보였다. 혈청의 총 지질 함량, 중성지방 그리고 총 콜레스테롤은 각 실험식이를 공급한 모든 기간에서 ECD군이 EChD군보다 유의하게 높았고, 혈청 HDL-콜레스테롤은 EChD군이 ECD군보다 유의하게 높게 나타났다. 지질과산화 지표인 간 조직 TBARS 함량은 모든 기간에서 ECD군이 EChD군보다 유의하게 높았고, 간의 conjugated diene 함량은 각 실험식이를 10일간 공급하였을 때만 ECD군이 EChD군보다 유의하게 높게 나타났다. 간 조직 내 항산화효소인 SOD 활성도는 각 실험식이를 30일간 공급하였을 때, 간 catalase와 GPx 활성도는 각 실험식이를 20일과 30일간 공급하였을 때 각각 EChD군이 ECD군보다 유의하게 높았다. 간 기능 지표인 혈청 GOT 활성도는 각 실험식이를 10일과 20일간 공급하였을 때, 혈청 GPT 활성도는 각 실험식이를 10일간 공급하였을 때 각각 ECD군이 EChD군보다 유의하게 높았다. 혈청 LDH 활성도는 각 실험식이를 공급한 모든 기간에서, 혈청 γ-GTP 활성도는 각 실험식이를 20일간 공급하였을 때 각각 ECD군이 EChD군보다 유의하게 높게 나타났다. 혈청 알코올 농도는 각 실험식이를 20일간 공급하였을 때 ECD군이 EChD군보다 유의하게 높았다. ADH 활성도는 각 실험식이를 30일간 공급하였을 때, ALDH 활성도는 각 실험식이를 20일과 30일간 공급하였을 때 각각 EChD군이 ECD군보다 유의하게 높게 나타났다. 본 실험의 결과 청국장의 급여는 간의 중성지방 함량을 감소시켜 알코올로 인한 지방간 생성을 감소시키고, 혈중 총 지질과 중성지방 및 총 콜레스테롤 함량을 감소시키며 항동맥경화 인자인 HDL-콜레스테롤 함량은 증가시켰다. 또한 간의 TBARS 함량과 conjugated diene 함량을 감소시키고, 간 SOD와 catalase 및 GPx 등 항산화 효소의 활성도를 증가시키는 것으로 나타났다. 그리고 혈청 GOT, GPT, LDH 및 γ-GTP 활성도를 감소시켰으며 간 알코올 분해효소인 ADH와 ALDH 활성도는 증가시키는 것으로 나타났다. 따라서 전통발효식품인 청국장은 알코올 섭취로 인해 증가된 혈중 지질 수준과 간의 지질과산화물 수준을 감소시키고, 간 기능 지표 수준을 개선시키며, 항산화 및 알코올 분해효소 활성을 증가시켜 알코올에 의한 산화적 스트레스를 감소시키고 알코올 대사의 중간생성물인 아세트알데히드의 생성을 감소시켜 알코올의 독성으로부터 세포를 보호하여 알코올에 의한 간 손상과 간질환의 발생을 지연시키거나 개선하는데 유용한 것으로 사료된다.

Keywords

References

  1. Mitchell M.C, Herlong H.F. 1986. Alcohol and nutrition: Caloric value, bioenergetics, and relationship to liver damage. Ann Rev Nutr 6: 457-474 https://doi.org/10.1146/annurev.nu.06.070186.002325
  2. Tsukamoto H, Towner S.J. 1984. Ethanol induced liver fibrosis in rats fed high fat diets. Hepatology 6: 814-822 https://doi.org/10.1002/hep.1840060503
  3. Lieber C.S. 1991. Hepatic metabolic and toxic effect of ethanol: 1991 update. Alcoholism Clin Exp Res 15: 573-592 https://doi.org/10.1111/j.1530-0277.1991.tb00563.x
  4. Rouach H, Clement M, Ofanelli M.T, Janvier B, Nordmann J, Nordmann R. 1983. Hepatic lipid peroxidation and mitochondria susceptibility to peroxidative attacks during ethanol inhalation and withdrawal. Biochem Biophys Acta 753: 439-44 https://doi.org/10.1016/0005-2760(83)90068-1
  5. Moncade C, Torres V, Varghese G, Albano E, Israsel Y. 1994. Ethanol-derived immuno reactive species formed by radical mechanisms. Mol Pharmacol 46: 786-791
  6. Tribble D.L, Aw T.Y, Jones D.P. 1987. The pathophysiological significance of lipid peroxidation in oxidative cell injury. Hepatology 7: 377-386 https://doi.org/10.1002/hep.1840070227
  7. Park H.S, Jang Y.J, Choi D.S, Namgung M.A, Lee Y.J, Kang S.A. 1995. Increased oxidative stress in sciatic nerves of streptozotocin-induced diabetic rats: Lack of vitamin C effect. Diabetes 19: 279-286
  8. Cho Y.J, Cha W.S, Bok S.K, Kim M.U, Chun S.S, Choi U.K. 2000. Production and separation of antihypertensive peptide during chunggugjang fermentation with bacillus subtilis CH-1023. J Korean Soc Agric Chem Biotechnol 43: 247- 252
  9. Park K.Y, Jung K.O. 2005. Fermented soybean products as functional foods: functional properties of Doenjang (fermented soy bean paste). In Asian Functional Foods. Taylor & Francis Group, LLC, CRC Press, USA. p 555-596
  10. Kim S.H, Yang J.L, Song Y.S. 1999. Physiological function of chongkukjang. Food Industry and Nutrition 4: 40-46
  11. Decarli L.M, Lieber C.S. 1967. Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr 91: 331-336 https://doi.org/10.1079/BJN20031070
  12. Yamada S, Wilson J.S, Lieber C.S. 1985. The effects of ethanol and diet on hepatic and serum $\gamma$-glutamyl transpeptidase activities in rats. J Nutr 115: 1285-1290 https://doi.org/10.1093/jn/115.10.1285
  13. Yang J.L, Lee S.H, Song Y.S. 2003. Improving effect of powders of cooked soybean and chongkukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. J Korean Soc Food Sci Nutr 32: 899-905 https://doi.org/10.3746/jkfn.2003.32.6.899
  14. Frings C.S, Dunn R.J. 1970. A colorimetric method for determination of total serum lipids based on the sulfophosphovanillin reaction. Am J Clin Path 53: 89 https://doi.org/10.1093/ajcp/53.1.89
  15. Folch J.M, Slone-Stanley G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226: 487-509
  16. Choi E.J. 1994. Study in lipid peroxides and glycosylated serum proteins in KK mice fed vitamin E supplemented diet. MS Thesis. Seoul National University, Seoul, Korea
  17. Misra H.P, Fridovich I. 1972. The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247: 3170-3175
  18. Tappel A.L. 1970. Glutathione peroxidase and hydroperoxides. Meth Enzymol 52: 506-513
  19. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  20. Lebsack M.E, Peterson D.R, Collus A.C. 1976. Preferential inhibition of the low Km aldehyde dehydrogenase activity by pargyline. Biochem Pharmacol 26: 1151-1154
  21. Shin K.H, Han Y.N, Chung H.S, Lim S.S, Lee S.H, Shin C.S. 1998. Effects of high molecular weight fractions of Aloe spp. in alcohol metabolism. Kor J Pharmacogn 29: 120-124
  22. Peterson G.L. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100: 201-220 https://doi.org/10.1016/0003-2697(79)90222-7
  23. Reitman S, Frankel S.A. 1957. Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathal 28: 56-63 https://doi.org/10.1093/ajcp/28.1.56
  24. Buncher T, Redetzki H. 1951. Specific photometric determination of ethyl alcohol based on an enzymatic reaction. Klin Wochenscher 29: 615-616 https://doi.org/10.1007/BF01485653
  25. Poklis A, Mackell M.A. 1982. Evaluation of a modified alcohol dehydrogenase assay for the determination of ethanol in blood. Clin Chem 28: 2125-2127
  26. Oh S.H, Cha Y.S, Choi D.S. 1999. Effects of Angelica gigas Nakai diet on lipid metabolism alcohol metabolism and liver function of rats administered with chronic ethanol. J Korean Soc Agric Chem Biotechnol 42: 29-33
  27. Lieber C.S. 1991. The influence of alcohol on nutritional status. Nutr Rev 46: 241-249 https://doi.org/10.1111/j.1753-4887.1988.tb05443.x
  28. Pikaar N.A, Wedel M, Vander Beek, VanDokkum W, Kenpen H.J, Kluft C, Ockhuizen T, Hermus R.J. 1987. Effects of moderate alcohol consumption on platelet aggregation fibrinolysis and blood lipids. Metabolism 36: 538-548 https://doi.org/10.1016/0026-0495(87)90163-6
  29. Chung E.J, Kim S.Y, Kim J.Y, Ahn J.Y, Park J.W, Cha M.H, Kim Y.C. 2003. Effects of soy protein concentrate and age on plasma lipids and phospholipid fatty acid patterns in female rats. J Korean Soc Food Sci Nutr 32: 269-277 https://doi.org/10.3746/jkfn.2003.32.2.269
  30. Lieber C.S. 1985. Alcohol and the liver: metabolism of ethanol, metabolic effects and pathogenesis of injury. Acta Med Scand Suppl 703: 11-55
  31. Zakim D, Boyer T.D. 1996. Hepatology: a textbook of liver disease. 3rd ed. WB Saunders, Philadelphia, USA. p 891
  32. Stephan A.M, Wald N.J. 1990. Trends in individual consumption of dietary fat in the United States 1920-1984. Am J Clin Nutr 52: 457-464 https://doi.org/10.1093/ajcn/52.3.457
  33. Koo B.K, Chung J.M, Lee H.S. 1998. Biochemical evaluation of nutritional status of protein and lipid in patients with alcoholic liver disease. J Korean Soc Food Sci Nutr 27: 1236-1243
  34. Song Y.S, Kwon T.W. 2000. Hypocholesterolemic effect of soybean and soy products. Food Industry and Nutrition 5: 36-41
  35. Park H.G, Lee M.H, Yoon S.H. 2006. Effects of chungkookjang on lipid contents in rats fed high cholesterol diet. J Kor Soc Hygienic Sciences 12: 1-6
  36. Cha Y.S. 1993. Cellular and enzymatic basis for carnitine mediated attenuation of ethanol metabolism. PhD Dissertation. Tennessee University, Knoxville, USA
  37. Ko Y.S, Park S.M, Kim S.H. 1998. The effects of dietary patterns and apolipoprotain E phenotype on the blood lipid profiles of individuals from Cheju area. Korean J Nutr 31: 1481-1497
  38. Nordmann R, Ribiere C, Rouach H. 1992. Implication of free radical mechanism in ethanol-induced cellular injury. Free Rad Biol Med 12: 219-240 https://doi.org/10.1016/0891-5849(92)90030-K
  39. Ryu S.H. 2002. Studies on antioxidative effects and antioxidative components of soybean and chongkukjang. MS Thesis. Inje University, Gyeongnam, Korea
  40. Ruiz-Larrea M.B, Mohan A.R, Paganga G, Miller N.J, Bolwell G.P, Rice-Evans C.A. 1997. Antioxidant activity of phytoestrogenic isoflavones. Free Rad Res 26: 63-70 https://doi.org/10.3109/10715769709097785
  41. Choi Y.B, Sohn H.S. 1998. Isoflavone content in Korean fermented and unfermented soybean foods. Korean J Food Sci Technol 30: 745-750
  42. Shin M.K, Han S.H, Park S.H. 2006. Effect of soybean powder on lipid metabolism and enzyme activities in induced hyperlipidemic rats. J East Asian Soc Dietary Life 16: 165-173
  43. Shin C.S, Rho S.N. 2006. Effect of powder of small water dropwort (Oenanthe javanica DC) and Brewer's yeast (Saccharomyces cerevisiae) on the liver function and serum lipid metabolism in alcohol-consumed rats. J East Asian Soc Dietary Life 16: 281-291
  44. Harata J, Nageta M, Sasaki E, Ishiguro I, Ohta Y, Yamazaki M, Hoshino T. 1982. Changes in activities of various enzyme and GOT isoenzyme in serum and liver of prolonged alcohol administered rats. Jpn J Alcol & Drug Dependence 17: 237-244
  45. Baraona E, Lieber C.S. 1970. Effect of chronic ethanol feeding on serum lipoprotein metabolism in the rat. J Clin Inves 49: 769-778 https://doi.org/10.1172/JCI106290
  46. Ginsberg A.L. 1970. Very high levels of SGOT and LDH in patients with extrahepatic biliary tract obstruction. Am J Dig Dis 15: 803-807 https://doi.org/10.1007/BF02236040
  47. Dakeishi M, Iwate T, Ishil N, Murata K. 2004. Effects of alcohol consumption on hepatocellular injury in Japanese men. Tohoku J Exp Med 202: 31-39 https://doi.org/10.1620/tjem.202.31
  48. Pares A, Soler X, Panes J, Pares X, Caballeria J, Farres J, Raz R, Rodes J. 1987. Hepatic alcohol and aldehyde dehydrogenase in liver disease. Alcohol Alcohol Suppl 1: 513-517
  49. Palmer K.R, Jenkins W.J. 1985. Aldehyde dehydrogenase in alcoholic subjects. Hepatology 5: 260-263 https://doi.org/10.1002/hep.1840050218
  50. Thomas M, Halsall S, Peters T.J. 1982. Role of hepatic acetaldehyde dehydrogenase in alcoholism: demonstration of persistent reduction of cytosolic activity in abstaining patients. Lancet 2: 1057-1059

Cited by

  1. Protective Effects of Fucoidan against Acute Alcohol-induced Liver Injury in Rats vol.46, pp.2, 2014, https://doi.org/10.9721/KJFST.2014.46.2.219
  2. Effect of Fermented Cucumber Beverage on Ethanol Metabolism and Antioxidant Activity in Ethanol-treated Rats vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1099
  3. Hepatoprotective Effects of Soybean Embryo by Enhancing Adiponectin-Mediated AMP-Activated Protein KinaseαPathway in High-Fat and High-Cholesterol Diet-Induced Nonalcoholic Fatty Liver Disease vol.19, pp.6, 2016, https://doi.org/10.1089/jmf.2015.3604
  4. Effects of Monascus-fermented Angelica gigas Nakai on the Contents of Serum Lipid and Tissue Lipid Peroxidation in Alcohol Feeding Rats vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1371
  5. Effect of black garlic on antioxidant activity and amino acids composition in Cheonggukjang vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.643
  6. Anti-Diabetic Effect of Red Ginseng-Chungkukjang with Green Laver or Sea Tangle vol.15, pp.3, 2010, https://doi.org/10.3746/jfn.2010.15.3.176
  7. Effect of Orostachys malacophyllus by Fermented Lactic Acid Bacteria on Plasma Levels of Lipid and Lipid Peroxidation in Alcohol Feeding Rats vol.24, pp.6, 2014, https://doi.org/10.5352/JLS.2014.24.6.677
  8. Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.173
  9. Fermentation and Quality Characteristics of Cheonggukjang with Chinese Cabbage vol.19, pp.5, 2012, https://doi.org/10.11002/kjfp.2012.19.5.659
  10. Antioxidant Activities and Changes in trans-Resveratrol and Indigestible Oligosaccharides according to Fermentation Periods in Cheonggukjang vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.243
  11. Protective Effects of Loquat (Eriobotrya japonica Lindl.) Leaf Extract on Ethanol-Induced Liver Damage in Rats vol.28, pp.4, 2017, https://doi.org/10.7856/kjcls.2017.28.4.537