Antioxidative Activities and Tyrosinase Inhibition Ability in Various Extracts of the Vitex rotundifolia Seeds

만형자(Vitex rotundifolia) 추출물의 항산화 활성과 Tyrosinase 저해 활성

  • Lee, Yang-Suk (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Choi, Bok-Dong (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Joo, Eun-Young (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Shin, Seung-Ryeul (Faculty of Cuisine and Nutrition, Daegu Haany University) ;
  • Kim, Nam-Woo (Department of Herbal Biotechnology, Daegu Haany University)
  • 이양숙 (대구한의대학교 한방생약자원학과) ;
  • 최복동 (대구한의대학교 한방생약자원학과) ;
  • 주은영 (대구한의대학교 한방생약자원학과) ;
  • 신승렬 (대구한의대학교 한방식품조리영양학부) ;
  • 김남우 (대구한의대학교 한방생약자원학과)
  • Published : 2009.02.28

Abstract

The purpose of this study was to measure flavonoid and polyphenol contents, and physiological activities of various extracts from Vitex rotundifolia seeds (known as Man Hyung Ja). We obtained three extracts using water (WE), ethanol (EE) and hot water (HWE). The EE sample had the highest flavonoid content of 31.05 mg/g. Polyphenol contents of WE and HWE were 186.69 mg/g and 182.55 mg/g, respectively. HWE had the highest superoxide dismutase (SOD)-like activity, at 83.40%. The electron donating abilities (EDA) were $91.14{\sim}95.97%$ at the concentration of 1.0 mg/mL, and all of extracts showed more than 88% EDA even at a concentration of 0.1 mg/mL. The inhibitory rates of xanthine oxidase were $94.02{\sim}97.51%$ when 1.0 mg/mL extracts were used, and all extracts showed more than 90% inhibition at 0.5 mg/mL. The nitrite scavenging abilities were $59.27{\sim}86.61%$ at pH 1.2 and 1.0 mg/mL extract concentration; these abilities decreased as pH increased. Tyrosinase inhibition activities of HWE and WE were 48.58% and 46.67%, respectively. These results indicate that Vitex rotundifolia seeds extract might be an effective antioxidative activity.

한방 약용자원으로 이용되고 있는 순비기나무(Vitex rotundifolia)의 종자를 건조시킨 만형자를 새로운 항산화제나 생리활성 소재로 활용하기 위한 연구의 일환으로 물추출물(WE)과 에탄올 추출물(EE) 그리고 열수 추출물(HWE)에 함유된 플라보노이드와 폴리페놀 화합물 함량을 분석하였고, 각 추출물을 $0.1{\sim}1.0\;mg/mL$의 농도로 희석하여 항산화 활성 및 tyrosinase 저해활성을 측정하였다. 플라보노이드 화합물 함량은 만형자 추출물 중 EE에서 31.05 mg/g으로 가장 많이 함유하였으며, 폴리페놀 화합물은 물을 용매로 추출한 WE에서 186.69 mg/g, HWE는 182.55 mg/g을 함유하였다. SOD 유사활성능은 1.0 mg/mL의 농도에서 $12.48{\sim}83.40%$로 HWE가 EE보다 6배 이상 높은 유사활성을 나타내었다. 전자공여능은 1.0 mg/mL의 농도에서 $91.14{\sim}95.08%$로 0.1 mg/mL 농도에서도 세가지 추출물 모두 88% 이상의 전자공여능을 나타내었다. 통풍을 일으키는 원인으로 알려져 있는 xanthine oxidase 대한 저해활성을 측정한 결과 1.0 mg/mL의 농도에서 $94.02{\sim}97.51%$였으며, 0.5 mg/mL에서도 90% 이상의 저해활성 나타내어 대조군인 ascorbic acid 보다 높은 xanthine oxidase 저해활성을 보였다. 아질산염 소거능은 pH 1.2의 조건에서 $59.27{\sim}86.61%$로 EE에서 가장 높았으며, pH 3.0에서는 $26.53{\sim}35.73%$, pH 6.0에서는 $14.07{\sim}19.55%$의 소거율을 나타내었다. Tyrosinase에 대한 저해활성을 측정한 결과에서는 $29.09{\sim}48.58%$로 HWE가 가장 높은 저해율을 보였으며 WE도 46.67%로 EE보다 약 1.5배 높은 저해활성을 나타내었다. 이상의 결과에서 만형자 추출물은 플라보노이드 함량은 EE에서 가장 많이 함유하였으나 폴리페놀 화합물은 WE와 HWE가 EE보다 약 1.8배 많았고 SOD 유사활성과 tyrosinase 저해율 또한 높았으며, 전자공여능은 EE에서 더 높았으나 WE가 유사한 활성을 나타내었다. 또한 아질산염 소거능은 pH 1.2에서는 EE가 높았으나 pH 3.0의 조건에서는 WE와 HWE가 더 우수한 소거효과를 나타내었으므로 만형자는 물을 용매로 추출하는 것이 에탄올을 용매로 추출하는 것보다 더 효율적인 것으로 사료되며, 천연항산화제나 미백제 및 기능성 식품 그리고 의약품 등의 원료 및 첨가물로써 활용될 수 있는 유용한 한방 약용자원인 것으로 판단된다.

Keywords

References

  1. Lee, T.B. (1993) In illustrated flora of Korea, 5th. Hyangmoonsa Seoul., p.644
  2. Yeeh, Y., Kang, S.S., Chung, H.G. and Chung, M.S. (1996) Genetic and clonal diversity in Korean populations of Vitex rotundifolia(Verbenaceae). J. Plant Research, 109, 161-168 https://doi.org/10.1007/BF02344541
  3. 구본홍. (1994) 동의보감 한글완역본(허준 저). 대중서관, p.293, 1445
  4. 國家中医药管理局編委会. (1999) 中華本草. 上海科學技術出版社, 上海, Vol 6 p.604-608
  5. Jang, S.J., Kim, Y.H., Kim, M.K., Kim, K.W. and Yun, S.E. (2002) Essential oil composition from leaves, flowers, stems, and fruits of Vitex rotundifolia L. fil. J. Korean Soc. Agric. Chem. Biotechnol., 45, 101-107
  6. Kang, S.S., Kim, J.S., Kim, H.J. and Jung, Y.R. (1994) Phytochemical analysis of Viticis Fructus. Kor. J. Pharmacogn., 25, 214-220
  7. Yoshioka, T., Inokuchi, T., Fujioka, S. and Kimura, Y. (2004) Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z. Naturforsch., 59, 510-514
  8. Choi, G.P., Cung, B.H., Lee, D.I., Lee, H.Y., Lee, J.H. and Kim, J.D. (2002) Screening of inhibitory activities on angiotensin converting enzyme from medicinal plants. Korean J. Medicinal Crop Sci., 10, 399-402
  9. Jo, K.J., Yoon, M.Y., Lee, M.R., Cha, M.R. and Park, H.R. (2007) The anticancer effect of extracts from Vitex rotundifolia on human colon carcinoma cell lines. J. Korean Soc. Appl. Biol. Chem., 50, 228-232
  10. Miyazawa, M., Shimamura, H., Nakamura, S. and Kameoka, H. (1995) Antimutagenic activity of (+)-polyalthic acid from Vitex rotundifolia. J. Agric. Food Chem., 43, 3012-3015 https://doi.org/10.1021/jf00060a004
  11. Shin, T.Y., Kim, S.H., Lim, J.P., Suh, E.S., Jeong, H.J., Kim, B.D., Park, E.J., Hwang, W.J., Rye, D.G., Baek, S.H., An, N.H. and Kim, H.M. (2000) Effect of Vitex rotundifolia on immediate-type allergic reaction. J. Ethnopharmacol., 72, 443-450 https://doi.org/10.1016/S0378-8741(00)00258-0
  12. Okuyama, E., Fujimori, S., Yamazaki, M. and Deyama, T. (1998) Pharmacologically active components of Vitis Fructus(Vitex rotundifolia). Ⅱ. The components having analgesic effects. Chem. Pharm. Bull., 46, 655-662
  13. Watanabe, K., Takata, Y., Matsuo, M. and Nishimura, H. (1995) Rotundial, a new natural mosquito repellent from the leaves of Vitex rotundifolia. Biosci. Biotechnol. Biochem., 59, 1979-1980 https://doi.org/10.1271/bbb.59.1979
  14. Kim, J.H., Park, S.S. and Song, C.K. (2008) Cultivation limit of Vitex rotundifolia, Tetragonia tetragonoides and Glehnia littoralis at coastal area and physiological vitality of RAW 264.7 cell and HL-60 cell. Korean J. Medicinal Crop Sci., 16, 44-50
  15. Jung, S.J., Lee, J.H., Song, H.N., Seong, N.S., Lee, S.E. and Baek, N.I. (2004) Screening for antioxidant activity of plant medicinal extracts. J. Korean Soc. Appl. Biol. Chem., 47, 135-140
  16. Joo, E.Y., Lee, Y.S. and Kim, N.W. (2007) Polyphenol compound contents and physiological activities in various extracts of the Vitex rotundifolia stems. J. Korean Soc. Food Sci. Nutr., 36, 813-818 https://doi.org/10.3746/jkfn.2007.36.7.813
  17. Freeman, B.A. and Grapo, J.D. (1982) Biology of disease; free radicals and tissue injury. Lab. Invest., 47, 412-426
  18. McCord, J.M. (1987) Oxygen-derived radicals; a link between repercussion injury and inflammation. Fed. Proc., 46, 2402-2406
  19. Nam, H.Y. and Cho, J.S. (2006) Quality characteristics of white pan bread with ingredients of sagonja-tang. Korean J. Food Cookery Sci., 22, 458-467
  20. Hong, S.P., Jeong, H.S., Jeong, E.J. and Shin, D.H. (2006) Quality characteristic of beverage with Gastrodia elata Blume extract. J. Fd. Hyg, Safety, 21, 31-35
  21. Moreno, M.I.N, Isla, M.I., Sampietro, A.R. and Vattuone, M.A. (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71, 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  22. AOAC. (2005) Official method of analysis. 18th ed., Association of official analytical chemists. Washington, D.C. USA., 45, 21-22
  23. Marklund, S. and Marklund, G. (1975) Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 468-474
  24. Blois, M.S. (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200
  25. Kato, H., Lee, I.E., Chuyen, N.V., Kim, S.B. and Hayase, F. (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Biol. Chem., 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  26. Stirpe, F. and Corte, E.D. (1969) The regulation of rat liver xanthine oxidase. J. Biol. Chem., 244, 3855-3861
  27. Yagi, A., Kanbara, T. and Morinobu, N. (1987) Inhibition of mushroom-tyrosinase by aloe extract. Planta Medica, 53, 517-519 https://doi.org/10.1055/s-2006-962799
  28. Kim, E.Y., Baik, I.H., Kim, J.H., Kim, S.R. and Rhyu, M.R. (2004) Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol., 36, 338-338
  29. Moon, J.S., Kim, S.J., Park, Y.M., Hwang, I.S., Kim, E.Y., Park, J.W., Park, I.B., Kim, S.W., Kang, W.G., Park, Y.K. and Jung, S.T. (2004) Antimicrobial effect of methanol extracts from some medicinal herbs and content of phenolic compounds. Korean J. Food Preserv., 11, 207-213
  30. Lim, J.D., Yu, C.Y., Kim, M.J., Yun, S.J., Lee, S.J., Kim, N.Y. and Chung, I.M. (2004) Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J. Medicinal Crop Sci., 12, 91-202
  31. An, B.J. and Lee, J.T. (2002) Studies on biological activity from extract of Crataegi fructus. Kor. J. Herbology, 17, 29-38
  32. Kwon, T.D., Choi, S.W., Lee, S.J., Chung, K.W. and Lee, S.C. (2001) Effects of polyphenol or vitamin C ingestion on antioxidative activity during exercise in rats. Korean J. Physical Education, 3, 891-899
  33. Lee, Y.S., Joo, E.Y. and Kim, N.W. (2006) Polyphenol contents and physiological activity of the Lespedeza bicolor extracts. Korean J. Food Preserv., 13, 616-622
  34. Kim, S.M., Cho, Y.S. and Sung, S.L. (2001) The antioxidant ability and nitrate scavenging ability of plant extract. Korean J. Food Sci. Technol., 33, 623-632
  35. Lee, Y.S., Joo, E.Y. and Kim, N.W. (2005) Antioxidant activity of extracts from the Lespedeza bicolor. Korean J. Food Preserv., 12, 75-79
  36. Jung, S.W., Lee, N.K., Kim, S.J. and Han, D.W. (1995) Screening of tyrosinase inhibitor from plants. Korean J. Food Sci. Technol., 27, 891-896