DOI QR코드

DOI QR Code

EFFECT OF INSTRUMENT COMPLIANCE ON THE POLYMERIZATION SHRINKAGE STRESS MEASUREMENTS OF DENTAL RESIN COMPOSITES

측정장치의 compliance 유무가 복합레진의 중합수축음력의 측정에 미치는 영향

  • Seo, Deog-Gyu (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Min, Sun-Hong (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Lee, In-Bog (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 서덕규 (연세대학교 치과대학 치과보존학교실) ;
  • 민선홍 (서울대학교 치의학대학원 치과보존학교실) ;
  • 이인복 (서울대학교 치의학대학원 치과보존학교실)
  • Published : 2009.03.31

Abstract

The purpose of this study was to evaluate the effect of instrument compliance on the polymerization shrinkage stress measurements of dental composites. The contraction strain and stress of composites during light curing were measured by a custom made stress-strain analyzer, which consisted of a displacement sensor, a cantilever load cell and a negative feedback mechanism. The instrument can measure the polymerization stress by two modes: with compliance mode in which the instrument compliance is allowed, or without compliance mode in which the instrument compliance is not allowed. A flowable (Filtek Flow: FF) and two universal hybrid (Z100: Z1 and Z250: Z2) composites were studied. A silane treated metal rod with a diameter of 3.0 mm was fixed at free end of the load cell, and other metal rod was fixed on the base plate. Composite of 1.0 mm thickness was placed between the two rods and light cured. The axial shrinkage strain and stress of the composite were recorded for 10 minutes during polymerization. and the tensile modulus of the materials was also determined with the instrument. The statistical analysis was conducted by ANOVA. paired t-test and Tukey's test (${\alpha}<0.05$). There were significant differences between the two measurement modes and among materials. With compliance mode, the contraction stress of FF was the highest: 3.11 (0.13). followed by Z1: 2.91 (0.10) and Z2: 1.94 (0.09) MPa. When the instrument compliance is not allowed, the contraction stress of Z1 was the highest: 17.08 (0.89), followed by FF: 10.11 (0.29) and Z2: 9.46 (1.63) MPa. The tensile modulus for Z1, Z2 and FF was 2.31 (0.18), 2.05 (0.20), 1.41 (0.11) GPa, respectively. With compliance mode. the measured stress correlated with the axial shrinkage strain of composite: while without compliance the elastic modulus of materials played a significant role in the stress measurement.

본 연구에서는 측정장치의 compliance유무가 복합레진의 중합수축응력 측정에 미치는 영향을 알아보았다. 변위센서, cantilever load cell과 부궤환 (negative feedback) 시스템을 적용하여 compliance를 허용하는 것과 허용하지 않는 두 가지 모드로 중합수축응력의 측정이 가능한 stress-strain analyzer를 제작하였다. 한 종의 flowable (Filtek Flow: FF) 복합레진과 두 종의 universal hybrid (Z100: Z1 and Z250: Z2) 복합레진이 사용되었다. Load cell의 끝과 base plate에 고정된 직경 3.0 mm의 금속 막대에 silane을 처리하였다. 1.0 mm의 거리로 고정한 두 개의 금속 막대 사이 에 복합레진을 적용한 후 광중합을 하였다. 복합레진의 수직 중합수축률과 중합수축응력을 10 분 동안 기록하였고 인장탄성계수도 구하였다. 통계처리는 일원분산분석과 paired t-test를 시행하였고 95% 유의수준에서 Tukey's test로 사후 검정하였다. 측정된 중합수축 응력은 재료와 compliance의 유무에 따라 큰 차이를 보였다. Compliance를 허용한 모드에서 중합수축응력은 FF: 3.11 (0.13)이 가장 컸으며 Z1: 2.91 (0.10), Z2: 1.94 (0.09) Mpa의 순서였다. 측정장치의 compliance를 허용하지 않은 경우에는 Z1 17.08 (0.89)이 가장 컸고 FF: 10.11 (0.29), Z2: 9.46 (1.63) MPa의 순이었다. 또한 Z1, Z2, FF의 인장탄성계수는 각각 2.31 (0.18), 2.05 (0.20), 1.41 (0.11) GPa 이었다. 중합수축응력은 compliance mode에서는 복합레진의 수직 중합수축률이 주요 영향 요인이었으며, compliance를 배제한 모드에서는 탄성계수의 효과가 지배적이었다.

Keywords

References

  1. Braga RR, Ferracane JL. Alternatives in polymerization contraction stress management. Crit Rev Oral Biol Med 15(3):176-184, 2004 https://doi.org/10.1177/154411130401500306
  2. Kleverlaan CJ. FeHzer AJ. Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater 21(12): 1150-1157. 2005 https://doi.org/10.1016/j.dental.2005.02.004
  3. Song YX, Inoue K. Linear of photo-activated composite resins during setting. J Oral Rehabil 28(4):335-341, 2001 https://doi.org/10.1046/j.1365-2842.2001.00661.x
  4. Lee lB, Cho BH. Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil 32(4):304-314. 2005 https://doi.org/10.1111/j.1365-2842.2004.01414.x
  5. Dauvillier BS. Aarnts MP, Feilzer AJ. Developments in shrinkage control of adhesive restoratives. J Esthet Dent 12(6):291-299. 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00238.x
  6. Carvalho RM. Pereira JC. Yoshiyama M. Pashley DH A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent 21(1):17-24, 1996
  7. Park J , Chang J. Ferracane J. Lee lB. How should composite be layered to reduce shrinkage stress : incremental or bulk filling? Dent Mater 24(11) :1501-1505, 2008 https://doi.org/10.1016/j.dental.2008.03.013
  8. Lee MR Cho BH, Son HH, Um CM, Lee lB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater 23(3):288-295. 2007 https://doi.org/10.1016/j.dental.2006.01.025
  9. Labella R, Lambrechts P, Van Meerbeek B. Vanherle G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 15(2):128-137, 1999 https://doi.org/10.1016/S0109-5641(99)00022-6
  10. Guggenberger R. Weinmann W. Exploring beyond methacrylates. Am J Dent 13(Spec No) :82D-84D. 2000
  11. Chantler PM. Hu X. Boyd NM. An extension of a phe nomenological model for dental composites. Dent Mater 15(2):144-149,1999 https://doi.org/10.1016/S0109-5641(99)00024-X
  12. Venhoven BA, de Gee AJ. Davidson CL. Light initiation of dental resins: dynamics of the polymerization. Biomaterials 17(24):2313-2318. 1996 https://doi.org/10.1016/S0142-9612(96)00074-9
  13. Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 66(11):1636-1639. 1987 https://doi.org/10.1177/00220345870660110601
  14. Park J. Chang J. Ferracane J. Lee lB. How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 24(11):1501-1505 2008 https://doi.org/10.1016/j.dental.2008.03.013
  15. Lutz E. Krejci I, Oldenburg TR. Elimination of polymerization stresses at the margins of posterior compos ite resin restorations: a new restorative technique. Quintessence Int 17(12):777-784, 1986
  16. Bowen RL. Nemoto K. Rapson JE. Adhesive bonding of various materials to hard tooth tissues: forces developing in composite materials during hardening. J Am Dent Assoc 106(4):475-477. 1983 https://doi.org/10.14219/jada.archive.1983.0078
  17. Bowen RL. Adhesive vonding of various materials to hard tooth tissues. VI. Forces developing in direct-filling materials during hardening. J Am Dent Assoc 74(4):439-445. 1967 https://doi.org/10.14219/jada.archive.1967.0078
  18. Hegdahl T, Gjerdet NR. Contraction stresses of com posite resin filling materials. Acta Odontol Scand 35(4):191-195, 1977 https://doi.org/10.3109/00016357709004654
  19. Bouschlicher MR, Vargas MA, Boyer DB. Effect of composite type. light intensity, configuration factor and laser polymerization on polymerization contraction forces. Am J Dent 10(2):88-96, 1997
  20. Watts DC, Marouf AS, AI-Hindi AM. Photo-polymer ization shrinkage-stress kinetics in resin-composites methods development. Dent Mater 19(1):1-11, 2003 https://doi.org/10.1016/S0109-5641(02)00123-9
  21. Chen HY, Manhart J , Kunzelmann KH, Hickel R. Polymerization contraction stress in light-cured compomer restorative materials. Dent Mater 19(7): 597-602, 2003 https://doi.org/10.1016/S0109-5641(02)00110-0
  22. Chen HY, Manhart J , Hickel R. Kunzelmann KH. Polymerization contraction stress in light-cured packable composite resins. Dent Mater 17(3):253-259, 2001 https://doi.org/10.1016/S0109-5641(00)00079-8
  23. Lu H, Stansbury JW, Dickens SH, Eichmiller FC, Bowman CN. Probing the origins and control of shrink age stress in dental resin-composites: I. Shrinkage stress characterization technique. J Mater Sci Mater Med 15(10):1097-1103, 2004 https://doi.org/10.1023/B:JMSM.0000046391.07274.e6
  24. Braga RR. Hilton TJ , Ferracane JL. Contraction stress of flowable composite materials and their efficacy as stress-relieving layers. J Am Dent Assoc 134(6): 721-728, 2003 https://doi.org/10.14219/jada.archive.2003.0258
  25. Braga RR. Ferracane JL. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res 81(2):114-118, 2002 https://doi.org/10.1177/154405910208100206
  26. Condon JR. Ferracane JL. Assessing the effect of composite formulation on polymerization stress. J Am Dent Assoc 131(4):497-503, 2000 https://doi.org/10.14219/jada.archive.2000.0207
  27. Braga RR. Ferracane J L. Alternatives in polymerization contraction stress management. Crit Rev Oral BioI Med 15(3):176-184, 2004 https://doi.org/10.1177/154411130401500306
  28. Lee SH, Chang J , Ferracane J , Lee IE. Influence of instrument compliance and specimen thickness on the polymerization shrinkage stress measurement of lightcured composites. Dent Mater 23(9):1093-1100, 2007 https://doi.org/10.1016/j.dental.2006.10.003
  29. Watts DC, Vogel K, Marouf AS. Shrinkage stress reduction in resin-composites of increasing particle concentration (abstract 2444). J Dent Res 81:A-308, 2002
  30. Feilzer AJ, Dauvillier BS. Effect of TEGDMA/BisGMA ratio on stress development and viscoelastic properties of experimental two-paste composites. J Dent Res 82(10):824-828, 2003 https://doi.org/10.1177/154405910308201012
  31. La SH, Lee IE, Cho BH, Son HH. Effect of light intensity on the polymerization rate of composite resin using real time measurement of volumetric change. J Kor Acad of Con Dent 27(2):135-141, 2002 https://doi.org/10.5395/JKACD.2002.27.2.135
  32. 박준규, 임범순, 이인복. 5 급 와동의 복합레진 수복 시 발생 되는 교두굴곡에 관한 연구. 대치보존지 33(2):83-89, 2008
  33. Lee IE, Cho BH, Son HH, Urn CM. Rheological characterization of composites using a vertical oscillation rheometer. J Kor Acad of Con Dent 29(6):489-497, 2004 https://doi.org/10.5395/JKACD.2004.29.6.489

Cited by

  1. The change of the initial dynamic visco-elastic modulus of composite resins during light polymerization vol.34, pp.5, 2009, https://doi.org/10.5395/JKACD.2009.34.5.450
  2. Evaluation of polymerization shrinkage stress in silorane-based composites vol.36, pp.3, 2011, https://doi.org/10.5395/JKACD.2011.36.3.188
  3. Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite vol.26, pp.3, 2013, https://doi.org/10.7234/composres.2013.26.3.182