Three-Dimensional Numerical Simulation of Impacts of Urbanization on Groundwater Flow and Salt Transport in a Coastal Aquifer, Suyeong-Gu, Busan, Korea

한국 부산광역시 수영구 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 도시화의 영향 삼차원 수치 모의

  • Cho, Hyeon-Jo (Department of Civil Engineering and Environmental Sciences, Korea Military Academy) ;
  • Kim, Jun-Mo (School of Earth and Environmental Sciences, Seoul National University)
  • 조현조 (육군사관학교 토목환경학과) ;
  • 김준모 (서울대학교 지구환경과학부)
  • Received : 2009.01.14
  • Accepted : 2009.04.01
  • Published : 2009.12.31

Abstract

A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of urbanization on density-dependent groundwater flow and salt transport in a coastal aquifer system, Suyeong-Gu, Busan, Korea. A series of steady-state numerical simulations of groundwater flow and salt transport before urbanization with material properties of geologic formations, which are established by numerical modeling calibrations considering all the urbanization factors, is performed first without considering all the urbanization factors. A series of transient-state numerical simulations of groundwater flow and salt transport after urbanization is then performed considering the urbanization factors individually and all together. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that density-dependent groundwater flow, salt transport, and seawater intrusion in the coastal aquifer system are intensively and extensively impacted by the urbanization factors. Especially, these urbanization factors result in the changes of the total groundwater volume and salt mass in the coastal aquifer system. However, such impacts of each urbanization factor are not spatially uniform but locally different.

한국 부산광역시 수영구 지역 해안 대수층 내의 밀도 의존적 지하수 유동 및 염분 이동에 대한 도시화의 영향을 효과적으로 모사하고 정량적으로 평가하기 위하여 하나의 범용 다차원 수리동역학적 분산 수치 모델을 이용한 일련의 삼차원 수치 모델링이 수행되었다. 먼저 모든 도시화 요소들을 고려한 수치 모델링 보정을 통해 확립된 연구 지역해안 대수층의 지층 물성을 가지고, 도시화 요소들을 모두 고려하지 않은 도시화 이전의 지하수 유동과 염분 이동에 대한 정상 상태 수치 모델링을 수행하였다. 그 다음에 도시화 요소들을 개별적으로 그리고 통합적으로 고려한 도시화 이후의 지하수 유동 및 염분 이동에 대한 비정상 상태 수치 모델링을 수행하였다. 그리고 두 수치 모델링 결과를 서로 비교하고 분석하였다. 수치 모델링 결과는 해안 대수층 내의 밀도 의존적 지하수 유동 및 염분 이동 그리고 해수 침투가 이러한 도시화 요소들에 의해 크게 그리고 광범위하게 영향을 받음을 보여준다. 특히 이러한 도시화 요소들은 해안 대수층 내의 총지하수량 및 총염분량의 변화를 초래한다. 그러나 각 도시화 요소의 그러한 영향은 공간적으로 균일하지 않고 국부적으로 차별적이다.

Keywords

References

  1. 국립지리원, 2005, 부산 1:5,000 수치지형도, 도엽번호 359130-24/25/26/34/35/36/44/45
  2. 국립해양조사원, 2004, 부산항에서 가덕도 1:50,000 수치해도, 해도번호 202
  3. 김윤영, 이강근, 성익환, 1998, 서울지역 지하수 시스템 조사: 수리적 특성 분석, 지질공학, 8(1), 51-73
  4. 동아대학교, 2008, 345kV 신양산-동부산 4차 전력구공사 지하수유출량 자료, 미출판 자료
  5. 박주현, 김중휘, 김한태, 김준모, 2008, 한국 부안 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 단층 존재의 영향 삼차원 수치 모의, 지하수토양환경, 13(5), 33-46
  6. 박화석, 김중휘, 염병우, 김준모, 2008, 해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의, 지하수토양환경, 13(4), 8-21
  7. 부경대학교, 2008, 부산광역시 수영구 양수정 조사 자료, 미출판자료
  8. 부산광역시 상수도 사업본부, 2007, 2007년 부산광역시 상수도 통계연보, p. 142
  9. 부산교통공단, 1991, 부산지하철 2호선 기본설계 시설분야(제3구간) 지질조사보고서, p. 230
  10. 부산교통공단, 1997, 부산지하철 3호선 시설분야 기본설계(미남-수영) 지질조사보고서, p. 347
  11. 부산교통공단, 2004, 부산지하철 3호선 2단계 323공구 토목공사지반조사보고서, p. 345
  12. 부산교통공사, 2008, 부산지하철 지하수 유출량 자료, 미출판 자료
  13. 부산직할시 종합건설본부, 1993, 광안대로건설 기본 및 실시설계 용역 지반조사보고서, p. 317
  14. 오찬성, 김준모, 2008, 경주 중.저준위 방사성 폐기물 처분장 부지에서의 지하수 유동과 염분 및 방사성 핵종 이동 삼차원 수치모의, 지질학회지, 44(4), 489-505
  15. 이진용, 구민호, 2007, 도시화가 지하수에 미치는 영향 및 도시지역 지하수 문제 고찰, 지질학회지, 43(4), 517-528
  16. 이찬구, 최원학, 장천중, 김지영, 이지훈, 1995, 온도변화가 암석의 기본물성과 압렬인장특성에 미치는 영향, 지질공학, 5(1), 21-29
  17. 이희근, 이정인, 양형식, 1983, 우리나라에 분포하는 주요암석류의 역학적 특성연구(제2보), 원자력발전소, 지하철건설지역 등에 분포하는 화산암 및 변성암의 역학적 성질, 대한광산학회지, 20(2), 101-109
  18. 자원개발연구소, 1978, 동래 및 월내 1:50,000 지질도폭 7019-IV/I 설명서, p. 44
  19. 정용복, 전석원, 2003, 절리군 분석을 위한 퍼지 클러스터링 기법, 터널과 지하공간, 13(4), 294-303
  20. 한국기상청, 1961-2007, 부산 기상관측소 기후자료, http://www.kma.go.kr
  21. 한국도로공사, 1996a, 아스팔트 포장 설계의 표준화 연구 보고서, No. 96-46-20, p. 244
  22. 한국도로공사, 1996b, 일반콘크리트 및 특수콘크리트 투수특성 연구(II) 보고서, No. 96-46-28, p. 104
  23. 한국동력자원연구소, 1983, 부산-가덕 1:50,000 지질도폭 설명서, p. 47
  24. 한국수자원공사, 2003, 부산지역 지하수 기초조사 보고서, No. HG-203-BS, p. 678
  25. 한국자원연구소, 1999, 지하수 오염방지 및 음용화 기술연구(부산지역) 보고서, No. KR-99(B)-2, p. 541
  26. 함세영, 차용훈, 정재열, 2005, 부산 도심지역 미고결층과 기반암의 수리지질 특성, 지질공학, 15(4), 407-421
  27. 해운대구청, 2008, 부산광역시 해운대구 양수정 조사 자료, 미출판 자료
  28. 환경부, 2007, 2006 상수도 통계, 상하수도국 수도정책과 연차보고서, p. 1885
  29. Ahmedzade, P., Tigdemir, M., and Kalyoncuoglu, S.F., 2007, Laboratory investigation of the properties of asphalt concrete mixtures modified with TOP-SBS, Construction and Building Materials, 21(3), 626-633 https://doi.org/10.1016/j.conbuildmat.2005.12.003
  30. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., 1998, Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements), FAO Irrigation and Drainage Paper, No. 56, United Nations Food and Agriculture Organization, p. 300
  31. Barlow, P.M., 2003, Ground Water in Freshwater-Saltwater Environments of the Atlantic Coast, Circular, No. 1262, United States Geological Survey, Reston, Virginia, p. 113
  32. Barlow, P.M. and Wild, E.C., 2002, Bibliography on the Occurrence and Intrusion of Saltwater in Aquifers along the Atlantic Coast of the United States, Open-File Report, No. 02-235, United States Geological Survey, Northborough, Massachusetts, p. 30
  33. Bear, J., 1972, Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, New York, p. 764
  34. Bobba, A.G., 2002, Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India, Hydrological Sciences Journal, 47(S), S67-S80 https://doi.org/10.1080/02626660209493023
  35. Carsel, R.F. and Parrish, R.S., 1988, Developing joint probability distributions of soil water retention characteristics, Water Resources Research, 24(5), 755-769 https://doi.org/10.1029/WR024i005p00755
  36. Chadbourn, B.A., Newcomb, D.E., and Timm, D.H., 1997, Measured and theoretical comparisons of traffic loads and pavement response distributions, Proceedings of the Eighth International Conference on Asphalt Pavements, Seattle, Washington, August 10-14, p. 229-238
  37. Cheng, J.M. and Chen, C.X., 2001, Three-dimensional modeling of density-dependent salt water intrusion in multilayered coastal aquifers in Jahe River Basin, Shandong Province, China, Ground Water, 39(1), 137-143 https://doi.org/10.1111/j.1745-6584.2001.tb00359.x
  38. Cheng, A.H.D. and Ouazar, D. (eds.), 2004, Coastal Aquifer Management: Monitoring, Modeling, and Case Studies, Lewis Publishers, Boca Raton, Florida, p. 280
  39. Dausman, A. and Langevin, C.D., 2005, Movement of the Saltwater Interface in the Surficial Aquifer System in Response to Hydrologic Stresses and Water-Management Practices, Broward County, Florida, Scientific Investigations Report, No. 2004-5256, United States Geological Survey, Reston, Virginia, p. 73
  40. Domenico, P.A. and Schwartz, F.W., 1990, Physical and Chemical Hydrogeology, John Wiley and Sons, New York, p. 824
  41. Endreny, T.A., 2005, Land use and land cover effects on runoff processes: Urban and suburban development, In: Melo Anderson (ed.), Encyclopedia of Hydrological Sciences, John Wiley and Sons, Chichester, p. 1775-1804
  42. Fetter, C.W., 1994, Applied Hydrogeology, third edition, Prentice-Hall, Upper Saddle River, New Jersey, p. 691
  43. Fetter, C.W., 1999, Contaminant Hydrogeology, second edition, Prentice-Hall, Upper Saddle River, New Jersey, p. 500
  44. Freeze, R.A. and Cherry, J.A., 1979, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, p. 604
  45. Gangopadhyay, S. and Das Gupta, A., 1995, Simulation of saltwater encroachment in a multi-layer groundwater system, Bangkok, Thailand, Hydrogeology Journal, 3(4), 74-88 https://doi.org/10.1007/s100400050074
  46. Garcia-Fresca, B. and Sharp, J.M., Jr., 2005, Hydrogeologic considerations of urban development: Urban-induced recharge, In: J. Ehlen, W.C. Haneberg, and R.A. Larson, (eds.), Humans as Geologic Agents, Reviews in Engineering Geology, Vol. XVI, Geological Society of America, Boulder, Colorado, p. 123-136
  47. Gelhar, L.W. and Axness, C.L., 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resources Research, 19(1), 161-180 https://doi.org/10.1029/WR019i001p00161
  48. Giambastiani, B.M.S., Antonellini, M., Oude Essink, G.H.P., and Stuurman, R.J., 2007, Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): A numerical model, Journal of Hydrology, 340(1-2), 91-104 https://doi.org/10.1016/j.jhydrol.2007.04.001
  49. Guo, W. and Langevin, C.D., 2002, User's Guide to SEAWAT:A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow, Techniques of Water-Resources Investigations Book, Vol. 6, Chapter A7 (Supercedes Open-File Report, No. 01-434), United States Geological Survey, Tallahassee, Florida, p. 77
  50. Hammah, R.E. and Curran, J.H., 1998, Fuzzy cluster algorithm for the automatic identification of joint sets, International Journal of Rock Mechanics and Mining Sciences, 35(7), 889-905 https://doi.org/10.1016/S0148-9062(98)00011-4
  51. Hammah, R.E. and Curran, J.H., 1999, On distance measures for the fuzzy K-means algorithm for joint data, Rock Mechanics and Rock Engineering, 32(1), 1-27 https://doi.org/10.1007/s006030050041
  52. Kanitpong, K., Benson, C.H., and Bahia, H.U., 2001, Hydraulic conductivity (permeability) of laboratory-compacted asphalt mixtures, Transportation Research Record, 1767(1), 25-32 https://doi.org/10.3141/1767-04
  53. Kasatkin, Y.N. and Kuznetsov, E.I., 2004, Design and construction of asphalt concrete cutoff structures in earthfill dams, Power Technology and Engineering, 38(2), 74-78 https://doi.org/10.1023/B:HYCO.0000036355.79116.2c
  54. Kim, Y.Y., Lee, K.K., and Sung, I.H., 2001, Urbanization and the groundwater budget, metropolitan Seoul area, Korea, Hydrogeology Journal, 9(4), 401-4 https://doi.org/10.1007/s100400100139
  55. Kim, J.M. and Yeh, G.T., 2004, COFAT3D: A Finite Element Model for Fully Coupled Groundwater Flow and Solute Transport in Three-Dimensional Saturated-Unsaturated Porous and Fractured Media, Version 1.0, Technical Report, No. GGEL-2004-12, Geological and Groundwater Engineering Laboratory, School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea, p. 354
  56. Langevin, C.D., 2001, Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida, Water-Resources Investigations Report, No. 00-4251, United States Geological Survey, Tallahassee, Florida, p. 130
  57. Lawrence, A.R., Morris, B.L., and Foster, S.S.D., 1998, Hazards induced by groundwater recharge under rapid urbanization, In: J.G. Maunds and M. Eddleston (eds.), Geohazards in Engineering Geology, Engineering Geology Special Publications, No. 15, Geological Society of London, p. 319-328
  58. Lee, J.Y., Yi, M.J., Moon, S.H., Cho, M., Won, J.H., Ahn, K.H., and Lee, J.M., 2007, Causes of the changes in groundwater levels at Daegu, Korea: The effect of subway excavations, Bulletin of Engineering Geology and the Environment, 66(3), 251-258 https://doi.org/10.1007/s10064-006-0074-x
  59. Lerner, D.N., 2002, Identifying and quantifying urban recharge:A review, Hydrogeology Journal, 10(1), 143-152 https://doi.org/10.1007/s10040-001-0177-1
  60. Li, Y.H. and Gregory, S., 1974, Diffusion of ions in sea water and in deep-sea sediments, Geochimica et Cosmochimica Acta, 38(5), 703-714 https://doi.org/10.1016/0016-7037(74)90145-8
  61. Masterson, J.P., 2004, Simulated Interaction between Freshwater and Saltwater and Effects of Ground-Water Pumping and Sea-Level Change, Lower Cape Cod Aquifer System, Massachusetts, Scientific Investigations Report, No. 2004-5014, United States Geological Survey, Reston, Virginia, p. 72
  62. Misut, P.E. and Voss, C.I., 2007, Freshwater-saltwater transition zone movement during aquifer storage and recovery cycles in Brooklyn and Queens, New York City, USA, Journal of Hydrology, 337(1-2), 87-103 https://doi.org/10.1016/j.jhydrol.2007.01.035
  63. Morris, D.A. and Johnson, A.I., 1967, Summary of Hydrologic and Physical Properties of Rock and Soil Materials, as Analyzed by the Hydrologic Laboratory of the United States Geological Survey 1948-60, Water-Supply Paper, No. 1839-D, United States Geological Survey, Reston, Virginia, p. 42
  64. Natural Resources Conservation Service, 2004a, Hydrologic Soil-Cover Complexes, National Engineering Handbook, Part 630. Hydrology, Chapter 9, United States Department of Agriculture, Washington, DC, p. 1-14
  65. Natural Resources Conservation Service, 2004b, Estimation of Direct Runoff from Storm Rainfall, National Engineering Handbook, Part 630. Hydrology, Chapter 10, United States Department of Agriculture, Washington, DC, p. 1-22
  66. Norton, D. and Knapp, R., 1977, Transport phenomena in hydrothermal systems: The nature of porosity, American Journal of Science, 277(8), 913-936 https://doi.org/10.2475/ajs.277.8.913
  67. Palmstrom, A., 2005, Measurements of and correlations between block size and rock quality designation (RQD), Tunnelling and Underground Space Technology, 20(4), 362-377 https://doi.org/10.1016/j.tust.2005.01.005
  68. Parsons, R.W., 1966, Permeability of idealized fractured rock, Society of Petroleum Engineers Journal, 6(2), 126-136 https://doi.org/10.2118/71297-PA
  69. Penman, H.L., 1948, Natural evaporation from open water, bare soil and grass, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, 193(1032), 120-145 https://doi.org/10.1098/rspa.1948.0037
  70. Qahman, K. and Larabi, A., 2006, Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine), Hydrogeology Journal, 14(5), 713-728 https://doi.org/10.1007/s10040-005-003-2
  71. Schneider, J.C. and Kruse, S.E., 2005, Assessing selected natural and anthropogenic impacts on freshwater lens morphology on small barrier islands: Dog Island and St. George Island, Florida, USA, Hydrogeology Journal, 14(1-2), 131-145 https://doi.org/10.1007/s10040-005-0442-9
  72. Snow, D.T., 1968, Rock fracture spacings, openings, and porosities, Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, 94(SM1), 73-91
  73. Snow, D.T., 1969, Anisotropic permeability of fractured media, Water Resources Research, 5(6), 1273-1289 https://doi.org/10.1029/WR005i006p01273
  74. Soroka, I., 1980, Portland Cement Paste and Concrete, Chemical Publishing Company, New York, p. 338
  75. van Genuchten, M.Th., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44(5), 892-898 https://doi.org/10.2136/sssaj1980.03615995004400050002x
  76. V$\acute{a}$zquez-Su${\tilde{n}}{\acute{e}}$, E., S$\acute{a}$nchez-Vila, X., and Carrera, J., 2005, Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain, Hydrogeology Journal, 13(3), 522-533 https://doi.org/10.1007/s10040-004-0360-2
  77. Voss, C.I., 1984, SUTRA: A Finite Element Simulation Model for Saturated-Unsaturated, Fluid-Density-Dependent Ground-Water-Flow with Energy Transport of Chemically-Reactive Single-Species Solute Transport, Water-Resources Investigations Report, No. 84-4369, United States Geological Survey, Reston, Virginia, p. 409
  78. Xu, M. and Eckstein, Y., 1995, Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale, Ground Water, 33(6), 905-908 https://doi.org/10.1111/j.1745-6584.1995.tb00035.x
  79. Yang, Y., Lerner, D.N., Barrett, M.H., and Tellam, J.H., 1999, Quantification of groundwater recharge in the city of Nottingham, UK, Environmental Geology, 38(3), 183-198 https://doi.org/10.1007/s002540050414
  80. Yeh, G.T., Cheng, J.R., and Cheng, H.P., 1994, 3DFEMFAT: A 3-Dimensional Finite Element Model of Density-Dependent Flow and Transport through Saturated-Unsaturated Media, Version 2.0, Technical Report, Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania, p. 200