Environmental and Ecological Characteristics of Habitats of Abelia tyaihyoni Nakai

줄댕강나무 자생지의 환경 및 생태 특성

  • Kim, Kyung-Ah (Department of Biological Sciences, Kangwon National University) ;
  • Jang, Su-Kil (Department of Biological Sciences, Kangwon National University) ;
  • Cheon, Kyeong-Sik (Department of Biological Sciences, Kangwon National University) ;
  • Seo, Won-Bok (Department of Biological Sciences, Kangwon National University) ;
  • Yoo, Ki-Oug (Department of Biological Sciences, Kangwon National University)
  • 김경아 (강원대학교 자연과학대학 생명과학과) ;
  • 장수길 (강원대학교 자연과학대학 생명과학과) ;
  • 천경식 (강원대학교 자연과학대학 생명과학과) ;
  • 서원복 (강원대학교 자연과학대학 생명과학과) ;
  • 유기억 (강원대학교 자연과학대학 생명과학과)
  • Received : 2010.08.11
  • Accepted : 2010.09.10
  • Published : 2010.09.30

Abstract

This study intended to investigate environmental factors including soil and vegetation in order to understand the environmental and ecological characteristics of four different habitats of Abelia tyaihyoni. These habitats, according to investigations, are mostly located at elevations of 203 m to 297 m with angles of inclination ranging from 9 degrees to 17 degrees. The litter depth of habitats is 2 cm to 5 cm. A total of 113 vascular plant taxa are identified in seven quadrates of the four habitats. The life form of 113 species is H-$D_4$-$R_5$-e type. The importance value of Abelia tyaihyoni is 39.61%, and 4 highly ranked species such as Quercus dentata (6.27%), Spiraea blumei, Spiraea prunifolia for. simpliciflora (4.04%) and Ulmus davidiana var. japonica (3.84%) are considered to be an affinity with Abelia tyaihyoni in their habitats. The dominant species of woody plants in the four habitats are represented as Pinus densiflora (21.22%) and Quercus dentata (16.82%) in the subtree layer (T2), and Carex humilis var. nana (18.95%) and Carex lanceolata (17.63%) in the herbaceous layer (H). The degree of their average species diversity is 1.42, and that of dominance and evenness are 0.07 and 0.86, respectively. The type of soil is sandy loam, clay loam and loam, and the average field capacity of soil is 22.49%. Their average organic matter is 9.39%, soil pH 6.75, and available phosphorus is $1.23 {\mu}g/g$.

본 연구는 줄댕강나무 자생지의 환경과 생태적 특성을 알아보기 위하여 수행되었다. 조사 결과 자생지는 해발 203-297 m의 범위에서 나타났고, 경사는 $9-17^{\circ}$, 그리고 낙엽층의 두께는 2-5 cm로 확인되었다. 식생조사 결과 4개 지역의 7개 방형구 내에 출현한 관속식물은 총 113종류였으며, 생활형은 H-$D_4$-$R_5$-e로 조사되었다. 관목층의 중요치는 줄댕강나무가 39.61%로 가장 높았고, 다음으로는 떡갈나무(6.27%), 산조팝나무와 조팝나무(4.04%), 느릅나무(3.84%) 등의 순으로 나타나 이 종류들이 줄댕강나무와 유사한 환경을 선호하는 것으로 생각된다. 상층 수목은 아교목층에 소나무(21.22%)와 떡갈나무(16.82%)가 우점하였고, 초본층은 가는잎그늘사초(18.95%)와 그늘사초(17.63%)가 높은 출현빈도와 피도를 보였다. 종다양도는 평균 1.42였고, 균등도와 우점도는 각각 0.07과 0.86으로 산출되었다. 토양분석 결과 자생지는 사양토, 점질양토, 양토로 조사되었으며, 포장용 수량은 평균 22.49%, 유기물함량은 9.39%로 나타났다. 또한 pH는 6.75 그리고 유효인산함량은 1.23 mg/g으로 조사되었다.

Keywords

References

  1. Allen, S. E. 1989. Chemical analysis of ecology materials, 2nd ed. Blackwell Scientific Pub., Oxford.
  2. Barbour, M. G., J. H. Burk and W. D. Pitts. 1987. Terrestrial plant ecology, 2nd ed. Benjamin-Cummings Pub. Co., California.
  3. Bray, J. R. and J. T. Curtis. 1957. An ordination of the upland forest communities of southem Wisconsin. EcoI. Mono. 27: 325-349. https://doi.org/10.2307/1942268
  4. Brower, J. E. and J. H. Zar. 1977. Field and laboratory method for general ecology. Wm. C. Brown Co. Publ., Iowa. Pp. 1-184.
  5. Buurman, P., van Langen and E. J. Velthorst. 1996. Manual for soil and water analysis. Backhuys Publishers, Leidin. Pp. 58-61.
  6. Cho, S. J., C. S. Park and D. I. Uhm. 2001. Assessing soil science. Hyangmunsa, Seoul. p. 366 (in Korean).
  7. Choi, J. H., K. W. Kwon and J. C. Chung. 2002. Effect of artificial shade treatment on the growth and biomass production of several deciduous tree species. J. Kor. For. En. 21: 65-75 (in Korean).
  8. Choo, Y. S. and S. D. Song. 1998. Ecophysiological characteristics of plant taxon-specific calcium metabolism. Korean J. Ecol. 21: 47-63 (in Korean).
  9. Cottle, R. 2004. Linking geology and biodiversity. English Nature Research Reports 562: 10-37.
  10. Ellstrand, N. C. and D. E. Elam. 1993. Population genetic consequences of small population size: Implications for plant conservation. Ann. Rev. Ecol. Syst. 24: 217-242. https://doi.org/10.1146/annurev.es.24.110193.001245
  11. Ewald, J. 2003. The calcareous riddle: Why are there so many calciphilous species in the central European flora? Folia Geobot. Phytotax. 38: 357-366. https://doi.org/10.1007/BF02803244
  12. Feodoroff, A. and R. Betriemieux. 1964. Une methods de laboratorire pour la determination de la capacite au champ. Science du sol. p. 109.
  13. Gauld, J. H. and J. S. Robertson. 1985. Soils and their related plant communities of the dalradian limestone of some sites in central perthshire. Scotland. J. Ecol. 73: 91-112. https://doi.org/10.2307/2259771
  14. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. Sinauer Associates Inc., Sunderland. Pp. 43-63.
  15. Jang, J. S. 1998. Genetic analysis and conservation biology of rare plants in Korea. Research in Agriculture and Life Science 2: 200-204 (in Korean).
  16. Jeffrey, D. W. 1987. Soil-plant relationships: an ecological approach. Timber Press, Oregon. Pp. 257-279.
  17. Jeong, J. H., C. S. Kim, K. S. Goo, C. H. Lee, H. G. Won and J. G. Byun. 2003. Physico-chemical properties of Korean forest soils by parent rocks. Jour. Korean For. Soc. 92: 254-262 (in Korean).
  18. Jeong, J. H., K. S. Kim, C. H. Lee and C. S. Kim. 2007. Genetic diver sity and spatial structure in population of Abelia tyaihyoni. Jour. Korean For. Soc. 96: 667-678 (in Korean).
  19. Jeong. J. H., K. S. Koo, C. H. Lee and C. S. Kim. 2002. Physico-chemicaI properties of Korean forest soils by regions. Jour. Korean For. Soc. 91: 694-700 (in Korean).
  20. Jin, H. O., M. J. Yi, Y. O. Shin, J. J. Kim and S. K. Chon. 1994. Forest soils. Hyangmunsa, Seoul (in Korean).
  21. Kalra, Y. P. and D. G. Maynard. 1991. Methods manual for forest soil and plant analysis. For. Can., Edmonton.
  22. Karron, J. D. 1987. A comparison of levels of genetic poIymorphisms and self-compatibility in geographically restricted and widespread plant congeners. Evol. Ecol. 1: 47-58. https://doi.org/10.1007/BF02067268
  23. Kim, T. J. 1998. Phylogenetic studies of Tribe Linnaeeae (Carpifoliaceae). Ph. D. Dissertation. Chonbuk National University. Jeonju (in Korean).
  24. Kim, J. H., H. T. Mun and Y. S. Kwak. 1990. Community structure and soil properties of the Pinus densiflora forests in limestone areas. Korean J. Ecol. 13: 285-295 (in Korean).
  25. Kim. J. H., H. T. Mun and Y. S. Kwak. 1991. Community structure and soil properties of Chinese cork oak (Quercus variabilis) forests in limestone area. Korean J. Ecol. 14: 159-169.
  26. Kim, J. W. and Y. K. Lee. 2006. Classification and assessment of plant communities. World Science, Seoul. Pp. 153-179 (in Korean).
  27. Kim. T. J., B. Y. Sun and Y. B. Suh. 2001. Palynology and cytotaxonomy of the genus Abelia s. I., Caprifoliaceae. Kor. J. Plant Tax. 31: 91-106 (in Korean).
  28. Korea Forest Research institute. 1997. Illustrated rare and endangered species in Korea. Korea Forest Research Institute, Seoul (in Korean).
  29. Korea National Arboretum and The Plant Taxonomic Society of Korea. 2007. A synonymic list of vascular plants in Korea. Korea National Arboretum, Pocheon (in Korean).
  30. Krebs, C. J. 1985. Ecology. 3rd ed. Haber & Row. Publishers. Inc. pp.3-14.
  31. Larcher, W. 1975. Physiological plant ecology. Springer-Verlag, Berlin. p. 252.
  32. Lee, C. Y. 2002. Forest environment pedology. Boseong culture, Daejeon. p. 350 (in Korean).
  33. Lee, K. S. and D. S. Cho. 2000. Relationships between the spatial distribution of vegetation and microenvironment in a temperate hardwood forest in Mt. Jumbong biosphere reserve area, Korea. Korean J. Ecol. 23: 241-253 (in Korean).
  34. Lee, S. W. 1981. Studies of forest soils in Koera (II). Jour. Korean For. Soc. 54: 25-36 (in Korean).
  35. Lee, T. B. 2003. Coloured flora of Korea. Hyangmunsa, Seoul (in Korean).
  36. Lee, W. T. 1996a. Lineamenta fIorae Korea. Academy Publishing Co., Seoul (in Korean).
  37. Lee, W. T. 1996b. Standard illustrations of Korean plants. Academy Publishing Co., Seoul (in Korean).
  38. Lee, W. T ard Y. J. Yim. 2002. Plant geography. Kangwon National University Press, Chuncheon (in Korean).
  39. Lee, Y. N. 2006. New Flora of Korea. Kyohaksa, Seoul (in Korean).
  40. Lee, Y. N. and Y. J. Oh. 1970. Limestone flora of Todam, province Chung Buk in South Korea J. Korean, Res. Inst. Better Living 5: 101-115 (in Korean).
  41. Ministry of Environment. 2006. The investigation guide for specially designed species by floristic region. 3rd ed. National Natural Environment Survey (in Korean).
  42. Mitschelich, G. 1981. Wald, Wachstum und Umwelt,-Waldklima und Wasserhaushalt Band 2, J. D. Sauerlander's Verlag, Frankfurt/ M. p. 402 (in German).
  43. Nakai, T. 1921. Tentamen systematic carprifoliacearum japonicarum. Journ. ColI. Sci. Univ. (Tokyo) 42: 5, 58.
  44. Oh, B. U., D. G. Jo, S. C. Ko, H. T. Im, W. K. Paik, J. H. Kim, C. Y. Yoon, Y. D. Kim, K. O. Yoo and C. G. Jang. 2006. Distribution maps of vascular plants of Korean peninsula -III. Central & South province(Chungcheong-do). Korea National Arboretum, Pocheon(in Korean).
  45. Paik, W. K. and W. T. Lee. 1989. A taxonomic study of the genus Abelia in Korea. Korean J. PI. Taxon. 19: 139-156 (in Korean).
  46. Pielou, E. C. 1975. Mathematical ecology. John Wiley & Sons, New York. p. 385.
  47. Rohrig, E. and H. A. Gussone. 1992. WaIdbau auf okoIogischer Grundlage. 2. Band, Verlag Paul Parey, Hamburg und Berlin, 6. Auflage. p. 314.
  48. Shannon, C. E.and W. Wiener. 1963. The mathematical theory of communication. Univ. Illinois Press. Urbana, Illinois.
  49. Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688. https://doi.org/10.1038/163688a0
  50. Swenen, S. M., G. J. Allan, M. Howe, W. J. Elisens, S. A. Junak and L. H. Rieseberg. 1995. Genetic analysis of the endangered island endemic Malacothamnus fasciculatus (Nutt.) Greene var. nesioticus (Rob.) Kearn. (Malvaceae). Conservation BioI. 9: 404-415. https://doi.org/10.1046/j.1523-1739.1995.9020404.x
  51. Sydes, M. A. and R. Peakall. 1998. Extensive clonality in the endangered shrub Haloragodendron lucasii (HaIoragaceae) revealed by allozymes and RAPDs. Molecular Ecology 7: 87-93. https://doi.org/10.1046/j.1365-294x.1998.00314.x
  52. Yoo, K. O., K. S. Cheon and S. K. Jang. 2009. Environmental and ecological charcteristics of Pulsatilla tongkangensis habitats. Kor. J. Env. Eco. 23: 439-446.
  53. Yun, C. W. and I. S. Moon. 2009. Classification of forest vegetation type and environmental properties in limestone area of Korea. Research in Agriculture and Life Science 43: 1-8 (in Korean).
  54. Whittaker, R. H. 1965. Dominance and diversity in land plant communities. Science 147: 250-260. https://doi.org/10.1126/science.147.3655.250
  55. Wohlgemuth, T. and A. Gigon. 2003. Calcicole plants diversity in Switzerland may reflect a variety of habitat templets. Folia Geobot. Phytotax. 38: 443-452.