DOI QR코드

DOI QR Code

On the Relation Between Cloud-to-Ground Lightning and Rainfall During 2006 and 2007 Summer Cases

2006-2007년 여름 사례로 본 구름-지면 낙뢰와 강우의 관계

  • Received : 2010.10.06
  • Accepted : 2010.12.02
  • Published : 2010.12.31

Abstract

A relationship between cloud-to-ground lightning and rainfall was investigated by using the two-years (2006-2007) summer lightning data and the automatic weather stations (AWSs) data of the Korea Meteorological Administration. The negative lightning occurred at the core of highly concentrated convection, which is often accompanied with heavy rains. Whereas most positive lightning occurred at the anvil cloud with low density and light rains. The rainfall intensity is strongest when the negative and positive lightning occurred concurrently, and one with lightning is much stronger than that without lightning. A portion of the positive lightning of the total lightning was less than 10% during summer seasons, and the lightning without rains was about 34%. The rain rate was strongly correlated with the negative flash rate, and the correlation coefficients varied between 0.87 and 0.94 according to the co-location radius (5-15 km) of AWSs. Most of the lightning occurred 10 minutes before and/or concurrently occurred with rains. A portion of the convective rainfalls of the total rainfalls was at least 20% when we define the rainfalls with lightning as convective. The convective rainfall was greater during August than in June and July. In general, the portion of convective rainfalls showed a maximum diurnal variation during late afternoon as in the rains and lightning.

본 연구에서는 2006-2007년 여름(6-8월)동안의 기상청 낙뢰 관측자료와 자동관측소 강우량 자료를 사용하여 여름철 낙뢰와 강우의 관계에 대해 분석하였다. 대부분의 부극성 낙뢰는 대류가 활발한 중심에 집중되어 발생하고 낙뢰빈도가 높고 강한 강우를 동반하였다. 반면 대부분의 정극성 낙뢰는 구름의 가장자리 또는 모루운에서 발생하고 낙뢰빈도는 낮으며, 약한 강우를 동반하였다. 일반적으로 강우강도는 부극성과 정극성이 함께 발생했을 경우 가장 강하고 부극성 낙뢰, 정극성 낙뢰, 그리고 낙뢰가 발생하지 않은 순으로 나타나고 있다. 여름철 전체 낙뢰 중 정극성 낙뢰의 비율은 평균 10% 이하이며 강우를 유발하지 않는 낙뢰의 비율은 평균 34%이다. 강우강도는 특히 부극성 낙뢰빈도와 높은양의 상관을 보였고, 낙뢰는 강우와 동시에 발생하거나 약 10분정도 선행하는 경향을 보였다. 낙뢰를 동반한 강우를 대류성 강우로 정의하여 분석한 결과 우리나라 여름철 강우 중 적어도 20% 이상은 대류성 강우이며 6, 7월보다는 8월에 대류성 강우가 많이 발생하고 있다. 또한 강우 및 낙뢰와 같이 대류성 강우의 비율도 오후에 최대치를 보이는 일변동을 보인다.

Keywords

References

  1. 권원태, 남경엽, 민승기, 최영은, 2002, 남부지방 일강우량과 호우의 경향분석. 대기, 12, 192-195.
  2. 김찬수, 서명석, 2009, 베이지안 방법을 이용한 우리나라 강우특성(1954-2007)의 변화시점 및 변화유형 분석. 대기, 19, 199-211.
  3. 명지수, 서명석, 2010, 남한 지역에서 발생한 구름-지면 낙뢰의 극성별 특성. 한국지구과학회지, 31, 314-326. https://doi.org/10.5467/JKESS.2010.31.4.335
  4. 엄효식, 서명석, 2009, 최근 남한지역에서 발생한 낙뢰의 통계적 특성. 한국지구과학회지, 30, 210-222. https://doi.org/10.5467/JKESS.2009.30.2.210
  5. 우정욱, 심응보, 2003, 낙뢰측정에 대한 기술동향과 LPATS 데이터에 의한 한반도 낙뢰현황. 조명.전기설비학회지, 17, 16-23.
  6. 이윤정, 2010, 여름철 낙뢰 발생 시 강수 및 위성의 휘도 온도 특성. 공주대학교 석사학위논문, 61 p.
  7. 이종호, 河崎善一郞, 류찬수, 2003, 일본 중서부지방에서 발생하는 동계 뇌 방전의 특징. 한국지구과학회지, 24, 181-189.
  8. 정은실, 이종호, 김병선, 권두순, 2002, 기상청 신 낙뢰관측 시스템의 특성 및 자료 활용방안. 대기, 12, 580-583.
  9. Cheze, J.L. and Sauvageot, H., 1997, Area-average rainfall and lightning activity. Journal of Geophysical Research, 102, 1707-1715. https://doi.org/10.1029/96JD02972
  10. Cummins, K.L., Murphy, M.J., Bardo, E.A., Hiscox, W.L., Pyle, R.B., and Pifer, A.E., 1998, A Combined TOA/MDF technology upgrade of the U.S. national lightning detection network. Journal of Geophysical Research, 103, 9035-9044. https://doi.org/10.1029/98JD00153
  11. Eom, H.S., Suh, M.S., Ha, J.C., Lee, Y.H., and Lee, H.S., 2008, Climatology of stability indices and environmental parameters derived from rawinsonde data over South Korea. Asia-Pacific Journal of Atmospheric Sciences, 44, 269-286.
  12. Grecu, M., Anagnostou, E.N., and Adler, R.F., 2000, Assessment of the use of lightning information in satellite infrared rainfall estimation. Journal of Hydrometeorology, 1, 211-221. https://doi.org/10.1175/1525-7541(2000)001<0211:AOTUOL>2.0.CO;2
  13. Kar, S.K. and Ha, K.J., 2003, Characteristics differences of rainfall and cloud-to-ground lightning activity over South Korea during the summer monsoon season. Monthly Weather Review, 131, 2312-2323. https://doi.org/10.1175/1520-0493(2003)131<2312:CDORAC>2.0.CO;2
  14. Lim, E., 2002, Effect of lightning data assimilation on the prediction of precipitation system derived by a cold front. Ph.D. Dissertation, Yonsei University, Seoul, Korea, 148 p.
  15. Lim, E. and Lee, T.Y., 2001, Effect of lightning assimilation on the prediction of precipitation system associate with a cold front. Proceeding of International Conference on Mesoscale Meteorology and Typhoon in East Asia. Taipei, Taiwan, 415-419.
  16. Lim, E. and Lee, T.Y., 2005, Statistical characteristics of lightning over the Korean Peninsula for 1996-2000. Journal of the Korean Meteorological Society, 41, 41-55.
  17. McCann, D.W., 1983, The enhanced-V: A satellite observable severe storm signature. Monthly Weather Review, 111, 887-894. https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2
  18. Petersen, W.A. and Rutledge, S.A., 1998, On the relationship between cloud-to- ground lightning and convective rainfall. Journal of Geophysical Research, 103, 14025-14040. https://doi.org/10.1029/97JD02064
  19. Petrova, S., Mitzeva, R., Kotroni, V., Latham, J., and Peneva, E., 2009, Analysis of summer lightning activity and precipitation in the Central and Eastern Mediterranean. Atmospheric Research, 91, 453-458. https://doi.org/10.1016/j.atmosres.2008.06.013
  20. Piepgrass, M.V., Krider, E.P., and Moore, C.B., 1982, Lightning and surface rainfall during Florida thunderstorms. Journal of Geophysical Research, 89, 11789-11805.
  21. Sheridan, S.C., Griffiths, J.F., and Orville, R.E., 1997, Warm season cloud-to-ground lightning-precipitation relationship in the South-Central United States. Weather and Forecasting, 12, 449-458. https://doi.org/10.1175/1520-0434(1997)012<0449:WSCTGL>2.0.CO;2
  22. Soriano, L.R., Pablo, F.D., and Diez, E.G., 2001, Relationship between convective precipitation and cloud-toground lightning in the Iberian Peninsula. Monthly Weather Review, 129, 2998-3003. https://doi.org/10.1175/1520-0493(2001)129<2998:RBCPAC>2.0.CO;2
  23. Tapia, A., Smith, J.A., and Dixon, M., 1998, Estimation of convective rainfall from lightning observations. Journal of Applied Meteorology, 37, 1497-1509. https://doi.org/10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2
  24. Williams, E.R., Weber, M.E., and Orville, R.E., 1989, The relationship between lightning type and convective state of thunderclouds. Journal of Geophysical Research, 94, 13213-13220. https://doi.org/10.1029/JD094iD11p13213
  25. Zajac, B.A. and Weaver, J.F., 2002, Lightning Meteorology I: An introductory course on forecasting with lightning data. Preprints, Symposium on the Advanced Weather Interactive Processing System (AWIPS), Orlando, FL, American Meteorology Society, p. 6.
  26. Zhou, Y., Qie, X., and Soula, S., 2002, A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China. Annales Geophysicae, 20, 107-113. https://doi.org/10.5194/angeo-20-107-2002
  27. Zipser, E.J., 1994, Deep cumulonimbus cloud systems in the Tropics with and without lightning. Monthly Weather Review, 122, 1837-1851. https://doi.org/10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2
  28. 기상청, 2006, 보도자료. http://kwra.or.kr/search/download.php3?file_name=07_1%20%B1%E2%C8%C4%BA%AF%C8%AD%BF%CD%202006%B3%E2%20%C0%E5%B8%B6.pdf (검색일: 2009. 2. 13)
  29. 기상청, 2008, 보도자료. http://www.newswire.co.kr/newsRead.php?no=339333 (검색일: 2009. 2. 13)

Cited by

  1. Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.420