Resistance to Reactive Oxygen Species and Antioxidant Activities of Some Strains of Lactic Acid Bacteria from the Mustard Leaf Kimchi

갓김치에서 분리된 유산균의 활성산소종에 대한 저항성과 항산화 활성

  • Lim, Sung-Mee (Department of Food Science and Technology, Tongmyong University)
  • 임성미 (동명대학교 식품공학과)
  • Received : 2010.11.10
  • Accepted : 2010.12.21
  • Published : 2010.12.31

Abstract

In present study, five strains of Lactobacillus acidophilus GK20, Lactobacillus brevis GK55, Lactobacillus paracasei GK74, Lactobacillus plantarum GK81, and Leuconostoc mesenteroides GK104 isolated from the mustard leaf kimchi were investigated for resistance to reactive oxygen species (ROS) and antioxidant activity. L. acidophilus GK20, L. brevis GK55, L. paracasei GK74, and L. plantarum GK81 were resistant to hydrogen peroxide (0.5 mM), showing a survival rate of 50% or more. In particular, L. acidophilus GK20 and L. paracasei GK74 were the most superoxide anions-resistant and L. paracasei GK74 and L. plantarum GK81 were most likely survive hydroxyl radicals. Meanwhile, the intracellular cell-free extract (ICFE) from L. plantarum GK81 exhibited significantly higher DPPH radical scavenging values ($96.4{\pm}2.8%$) than the intact cells (IC). The ICFE of L. plantarum GK81 showed the highest superoxide radical scavenging ability and chelating activity for $Fe^{2+}$ ions among the 5 lactic acid bacteria (LAB) tested, and IC and ICFE from L. plantarum GK81 demonstrated excellent reducing activity, which was higher than those of BHA and vitamin C as a positive control.

갓김치로부터 분리된 유산균 5종(Lactobacillus acidophilus GK20, Lactobacillus brevis GK55, Lactobacillus paracasei GK74, Lactobacillus plantarum GK81, 및 Leuconostoc mesenteroides GK104)의 활성산소종에 대한 저항성 및 항산화 활성을 조사하였다. Hydrogen peroxide (0.5 mM)와 반응 5시간후 L. acidophilus GK20, L. brevis GK55, L. paracasei GK74 및 L. plantarum GK81들은 50% 이상의 생존율을 보였으며, superoxide anions에 의한 저해율은 L. acidophilus GK20와 L. paracasei GK74가 가장 낮았고, hydroxyl radical과의 반응에서는 L. paracasei GK74와 L. plantarum GK81이 가장 안정하였다. 한편, L. plantarum GK81는 실험 균주 중 가장 높은 DPPH 소거능($70.8{\pm}10.1%$)을 나타내었는데, 세포(IC)보다는 세포추출물(ICFE)의 활성이 더 높았다. 또한 L. plantarum GK81의 ICFE는 다른 균주들에 비해 높은 superoxide radical 소거능을 보였고, 이 균주의 IC와 ICFE에 의한 환원력은 BHA와 vitamin C보다 유의적으로 더 높게 나타났으며, L.paracasei GK74 IC의 환원력도 vitamin C와 비슷한 수준으로 나타났다. L. brevis GK55, L. paracasei GK74 및 L.mesenteroides GK104 IC의 $Fe^{2+}$-chelating 활성은 30% 이상이었고, L. plantarum GK81의 ICFE는 45% 이상의 활성을 나타내었다. 따라서 실험 균주 중 L. plantarum GK81은 다른 균들에 비해 ROS에 대해 비교적 안정하고, 항산화 활성도 가장 높은 것으로 확인되었다.

Keywords

References

  1. Akaike, T., K. Sato, S. Ijiri, Y. Miyamoto, M. Kondo, M. Ando, and H. Maeda. 1992. Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. Arch. Biochem. Biophys. 294, 55-63. https://doi.org/10.1016/0003-9861(92)90136-K
  2. Aoshima, H., H. Tsunoue, H. Koda, and Y. Kiso. 2004. Aging of whisky increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J. Agr. Food Chem. 52, 5240-5244. https://doi.org/10.1021/jf049817s
  3. Bai, J., A.M. Rodriguez, J.A. Melendez, and A.I. Cederbaum. 1999. Over-expression of catalase in cytosolic or mitochondrial compartment protests Hep G2 cells against oxidative injury. J. Bio. Chem. 274, 26217-26224. https://doi.org/10.1074/jbc.274.37.26217
  4. Barreto, J.C., G.S. Smith, N.H.P. Strobel, P.A. McQuillin, and T.A. Miller. 1995. Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. 56, 89-96.
  5. Bauer, A.W., W.M.M. Kirby, J.C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
  6. Brand-Williams, W., M.E. Cuvelier, and G. Barnes. 1985. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25-30.
  7. Castro, L. and B.A. Freeman. 2001. Reactive oxygen species in human health and disease. Nutrition 17, 161-165. https://doi.org/10.1016/S0899-9007(00)00570-0
  8. Chang, J.H., K.M. Yoo, and I.K. Hwang. 2006. Screening of natural herb methanol extracts for antioxidant activity in V79-4 cells. Kor. J. Food Cookery Sci. 22, 428-437.
  9. Cho, Y.H., J.Y. Imm, H.Y. Kim, S.G. Hong, S.J. Hwang, D.J. Park, and S.J. Oh. 2009. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Kor. J. Food Sci. Ani. Resour. 29, 640-646. https://doi.org/10.5851/kosfa.2009.29.5.640
  10. Choi, S.S., Y. Kim, K.S. Han, S. You, S. Oh, and S.H. Kim. 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42, 452-458. https://doi.org/10.1111/j.1472-765X.2006.01913.x
  11. Fu, R.Y., R.S. Bongers, I.I. Swam, J. Chen, D. Molenaar, M. Kleerebezem, J. Hugenholtz, and Y. Li. 2006. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metab. Eng. 8, 662-671. https://doi.org/10.1016/j.ymben.2006.07.004
  12. Gardner, H.W. 1975. Decomposition of linoleic acid hydroperoxides. J. Agric. Food Chem. 23, 129-136. https://doi.org/10.1021/jf60198a012
  13. Jain, S., H. Yadav, and P.R. Sinha. 2009. Antioxidant and cholesterol assimilation activities of selected lactobacilli and lactococci cultures. J. Dairy Res. 76, 385-391. https://doi.org/10.1017/S0022029909990094
  14. Kaizu, H., M. Sasaki, H. Nakajima, and Y. Suzuki. 1993. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76, 2493-2499. https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  15. Kim, E.Y., I.H. Baik, J.H. Kim, S.R. Kim, and M.R. Rhyu. 2004. Screening of the antioxidant activity of some medicinal plants. Kor. J. Food Sci. Technol. 36, 333-338.
  16. Kim, H.S. and J.S. Ham. 2003. Antioxidative ability of lactic acid bacteria. Kor. J. Food Sci. Ani. Resour. 23, 186-192.
  17. Kullisaar, T., M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane, and A. Kilk. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72, 215-224. https://doi.org/10.1016/S0168-1605(01)00674-2
  18. Lee, B.J., J.S. Kim, Y.M. Kang, J.H. Lim, Y.M. Kim, M.S. Lee, M.H. Jeong, C.B. Ahn, and J.Y. Je. 2010. Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem. 122, 271-276. https://doi.org/10.1016/j.foodchem.2010.02.071
  19. Lee, J., K.T. Hwang, M.S. Heo, J.H. Lee, and K.Y. Park. 2005. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. J. Med. Food 8, 299-304. https://doi.org/10.1089/jmf.2005.8.299
  20. Lee, S.E., N.S. Seong, C.G. Park, and J.S. Seong. 2002. Screening for antioxidative activity of oriental medicinal plant materials. Kor. J. Med. Crop. Sci. 10, 171-176.
  21. Lin, M.Y. and C.L. Yen. 1999. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 47, 1460-1466. https://doi.org/10.1021/jf981149l
  22. Lin, M.Y. and F.J. Chang. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 45, 1617-1622. https://doi.org/10.1023/A:1005577330695
  23. Nishino, T., H.S. Sone, H.K. Hayakawa, and F. Ishikawa. 2000. Transit of radical scavenging activity of milk products prepared by mailliard reaction and Lactobacillus casei strain Shirota fermentation through the hamster intestine. J. Dairy Sci. 83, 915-922. https://doi.org/10.3168/jds.S0022-0302(00)74954-X
  24. Oyaizu, M. 1986. Antioxidative activities of browing reaction prepared from glucosamine. Jpn. J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  25. Park, S.K., S.S. Chun, Y.S. Cho, J.S. Moon, J.S. Choi, and S.W. Lee. 1995. Changes in mineral, pigment, texture, sensory score and microflora during fermentation of Gat(Leaf Mustard)-Kimchi. Kor. J. Post-Harvest Sci. Technol. Agri. Products 2, 131-138.
  26. Pelicano, H., D. Carney, and P. Huang. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist. Update 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004
  27. Rogosa, M. 1986. Bergey's Manual of Determinative Bacteriology. In R.E. Buchanan and N.E. Gibbons (eds.). Williams & Wilkins, Baltimore, MD, USA.
  28. Saide, J.A.O. and S.E. Gilliland. 2005. Antioxidative activity of Lactobacilli measured by oxygen radical absorbance capacity. J. Dairy Sci. 88, 1352-1357. https://doi.org/10.3168/jds.S0022-0302(05)72801-0
  29. Sallmyr, A., J. Fan, and F.V. Rassool. 2008. Genomic instability in myeloid malignancies: Increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 270, 1-9. https://doi.org/10.1016/j.canlet.2008.03.036
  30. Scandalios, J.G. 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38, 995-1014. https://doi.org/10.1590/S0100-879X2005000700003
  31. Shim, S.M. and J.H. Lee. 2008. PCR-Based detection of lactic acid bacteria in Korean fermented vegetables with recA gene targeted species-specific primers. Kor. J. Microbiol. Biotechnol. 36, 96-100.
  32. Shimamura, S., F. Abe, N. Ishibashi, H. Miyakawa, T. Yaeshima, T. araya, and M. Tomita. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75, 3296-3306. https://doi.org/10.3168/jds.S0022-0302(92)78105-3
  33. Su, L., J.J. Yin, D. Charles, K. Zhou, J. Moore, and L. Yu. 2007. Total phenolic contents, chelating capacities, and radicalscavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem. 100, 990-997. https://doi.org/10.1016/j.foodchem.2005.10.058
  34. Tampo, Y., M. Tsukamoto, and M. Yonaha. 1999. Superoxide production from paraquat evoke by exogenous NADPH in pulmonary endothelial cells. Free Radical Bio. Med. 27, 588-595. https://doi.org/10.1016/S0891-5849(99)00110-0
  35. Tome, M.E., A.F. Baker, G. Powis, C.M. Payne, and M.M. Briehl. 2001. Catalase-overexpressing thymocytes are resistant to glucocorticoid-induced apoptosis and exhibit increased net tumor growth. Cancer Res. 61, 2766-2773.
  36. Virtanen, T., A. Pihlanto, S. Akkanen, and H. Korhonen. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102, 106-115. https://doi.org/10.1111/j.1365-2672.2006.03072.x
  37. Wei Han, M.D., A. Mercenier, A.A. Belgnaoui, S. Pavan, F. Lamine, I.I. Swam, M. Kleerebezem, C.S. Cartier, M. Hisbergues, L. Bueno, V. Theodorou, and J. Fioramonti. 2006. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm. Bowel Dis. 12, 1044-1052. https://doi.org/10.1097/01.mib.0000235101.09231.9e
  38. Yu, L., J. Perret, D. Davy, J. Wilson, and C.L. Melby. 2002. Antioxidant properties of cereal products. J. Food Sci. 67, 2600-2603. https://doi.org/10.1111/j.1365-2621.2002.tb08784.x
  39. Zitzelsberger, W., F. Gotz, and K.H. Schleifer. 1984. Distribution of superoxide dismutases oxides and NADH peroxides and various streptococci. FEMS Microbiol. Lett. 21, 243-246. https://doi.org/10.1111/j.1574-6968.1984.tb00218.x