DOI QR코드

DOI QR Code

Effect of starch content on the non-isothermal crystallization behavior of HDPE/silicate nanocomposites

  • Kim, Hyung-Joong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Jong-Jib (Division of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Chul (School of Biotechnology & Bioengineering, Kangwon National University) ;
  • Kim, Youn-Cheol (Division of Advanced Materials Engineering, Kongju National University)
  • Received : 2009.03.24
  • Accepted : 2009.08.18
  • Published : 2010.05.25

Abstract

The non-isothermal crystallization behavior and silicate dispersion of high-density polyethylene (HDPE)/modified montmorillonite (20A) composites containing starch masterbatch (starch MB) were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscope (TEM). The dispersion of 20A in HDPE matrix depended on the starch content. The Avrami analysis shows that the non-isothermal crystallization process of the HDPE/20A composites followed the Avrami equation with Avrami exponent value in the range of 1.5-2.5. The activation energies calculated by Kissinger method were 350 kJ/mol for HDPE-5, 462 kJ/mol for HD90-5, 542 kJ/mol for HD80-5, and 411 kJ/mol for HD70-5. The activities of nucleation of HD90-5 and HD80-5 were 0.89 and 0.88, respectively but the value of HD70-5 was 0.61. These behaviors can be interpreted by the fact that the increase of the starch MB content enhances the dispersion of clay in HDPE matrix and the good dispersion of 20A affects the degree of super cooling and the nucleation activity of silicate.

Keywords

Acknowledgement

Supported by : Small and Medium Business Administration

References

  1. J. Heinemann, P. Reichert, R. Thomann, R. Mulhaupt, Macro. Rapid Commun. 20 (1999) 423. https://doi.org/10.1002/(SICI)1521-3927(19990801)20:8<423::AID-MARC423>3.0.CO;2-N
  2. Y. Kurokawa, H. Yasuda, A. Oya, J. Mater. Sci. 35 (2000) 1045. https://doi.org/10.1023/A:1004773222849
  3. L. Zheng, R.J. Farris, E.B. Coughlin, Macromolecules 34 (2001) 8034. https://doi.org/10.1021/ma0110094
  4. P.H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, A. Usuki, Polymer 42 (2001) 9633. https://doi.org/10.1016/S0032-3861(01)00512-2
  5. K.H. Wang, M.H. Choi, C.K. Koo, Y.S. Choi, I.J. Chung, Polymer 42 (2001) 9819. https://doi.org/10.1016/S0032-3861(01)00509-2
  6. P. Svoboda, C. Zeng, H. Wang, J. Lee, D.L. Tomasko, J. Appl. Polym. Sci. 85 (2002) 1562. https://doi.org/10.1002/app.10789
  7. Y.C. Kim, Polymer J. 38 (2006) 250 https://doi.org/10.1295/polymj.38.250
  8. C.k. Hong, I. Hwang, N. Kim, D.H. Park, B.S. Hwang, C. Nah, J. Ind. Eng. Chem. 14 (2008) 71. https://doi.org/10.1016/j.jiec.2007.07.002
  9. Y.C. Kim, S.J. Lee, J.-K. Kim, H. Cho, Polymer J. 37 (2005) 206. https://doi.org/10.1295/polymj.37.206
  10. Y.C. Kim, J.H. Kim, K.H. Kim, I.J. Chung, Polymer J. 40 (2008) 268. https://doi.org/10.1295/polymj.PJ2007183
  11. Y.C. Kim, J.-C. Kim, J. Ind. Eng. Chem. 13 (2007) 1029.
  12. J. Li, C. Zhou, W. Gang, Polymer Test. 22 (2003) 217. https://doi.org/10.1016/S0142-9418(02)00085-5
  13. C. Saujanya, S. Radhakrishnan, Polymer 42 (2001) 6723. https://doi.org/10.1016/S0032-3861(01)00140-9
  14. C.R. Herrero, J.L. Acosta, Polymer J. 26 (1994) 786. https://doi.org/10.1295/polymj.26.786
  15. H.E. Kissinger, J. Res. Natl. Stand. 57 (1956) 217. https://doi.org/10.6028/jres.057.026
  16. A. Dobreva, I. Gutzow, J. Non-crystalline Solids 162 (1993) 13. https://doi.org/10.1016/0022-3093(93)90737-I

Cited by

  1. PP-SEBS/실리케이트 복합체의 유변학적 특성 연구 vol.12, pp.4, 2010, https://doi.org/10.5762/kais.2011.12.4.1988
  2. Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites vol.67, pp.9, 2011, https://doi.org/10.1007/s00289-011-0613-x
  3. Crystallization of poly(ethylene oxide) embedded with surface‐modified SiO2 nanoparticles vol.62, pp.7, 2010, https://doi.org/10.1002/pi.4402
  4. 개질 폴리프로필렌/나노필러 복합체의 유변학적 특성 및 발포거동 vol.37, pp.4, 2010, https://doi.org/10.7317/pk.2013.37.4.494
  5. Non-isothermal crystallization kinetics of polyethylene-clay nanocomposites prepared by high-energy ball milling vol.37, pp.5, 2014, https://doi.org/10.1007/s12034-014-0051-0
  6. Effect of organomodified montmorillonite concentration on tensile and flow properties of low-density polyethylene–thermoplastic corn starch blends vol.27, pp.8, 2010, https://doi.org/10.1177/0892705712461645
  7. A study on the evaluation of cesium removal performance in soil washing process using flocculating agent vol.316, pp.3, 2010, https://doi.org/10.1007/s10967-018-5879-0