Ginsenoside Contents and Antioxidative Activities from Red Ginseng Treated with High Hydrostatic Pressure

초고압 처리한 홍삼의 ginsenoside 함량 및 항산화 활성

  • Shin, Chang-Sik (Nutrex Technology R&D center) ;
  • Lee, Do-Hyun (Nutrex Technology R&D center) ;
  • Kim, Sung-Han (Nutrex Technology R&D center) ;
  • Shin, Min-Ho (Dept. of Food Science and Biotechnology, Kunsan Nat'l Univ.) ;
  • Jeong, Chang-Ho (Dept. of Food Sci. and Techn., Gyeongsang Nat'l Univ. (Insti. of Agric. & Life Sci.)) ;
  • Shim, Ki-Hwan (Dept. of Food Sci. and Techn., Gyeongsang Nat'l Univ. (Insti. of Agric. & Life Sci.))
  • 신창식 (뉴트렉스테크놀로지 생명공학연구소) ;
  • 이도현 (뉴트렉스테크놀로지 생명공학연구소) ;
  • 김성한 (뉴트렉스테크놀로지 생명공학연구소) ;
  • 신민호 (군산대학교 식품생명공학과) ;
  • 정창호 (경상대학교 식품공학과(농업생명과학연구원)) ;
  • 심기환 (경상대학교 식품공학과(농업생명과학연구원))
  • Received : 2010.09.24
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

This study was carried out to investigate the changes of ginsenoside contents and antioxidative activities from red ginseng after treated with high hydrostatic pressure (RGHHP). Crude saponin content in traditional red ginseng (TRG) and RGHHP were 21.93 and 27.29 mg/g, respectively. The contents of total phenolics, crude saponin and ginsenoside increased after treated with high hydrostatic pressure. TRG and RGHHP showed an increase 25.60% the highest content of Rb1 (14.10 mg/g and 17.71 mg/g). Also, Rg3 content compared with TRG and RGHHP increased 10.46%. The radical scavenging activity of hot water extract from red ginseng against the DPPH and ABTS radicals increased with the increasing amount of extract and RGHHP higher than TRG. The reducing power and ferric reducing antioxidant power (FRAP) assays of the red ginseng were increased in a dose dependent manner. The FRAP of TRG and RGHHP were 0.30 and 0.36 absorbance, respectively at a concentration of 10 mg/mL. The present results suggest that RGHHP would have the protective potential from oxidative stress induced by free radicals.

초고압 처리가 홍삼의 진세노사이드 함량 및 항산화 활성에 미치는 영향에 대하여 조사하였다. 전통적인 방법으로 제조한 일반 홍삼과 초고압 처리 홍삼의 조사포닌 함량은 각각 21.93 및 27.29 mg/g이었고, 총 페놀성 화합물과 조사포닌 및 진세노사이드 함량은 초고압 처리에 의해 증가하였다. 일반 홍삼과 초고압 처리 홍삼에 가장 많이 함유되어 있는 진세노사이드는 Rb1으로 각각 14.10 mg/g과 17.71 mg/g 이었으며, 초고압 처리에 의하여 25.60% Rb1이 증가하였다. 또한 홍삼의 특징적인 유효 성분인 Rg3는 일반 홍삼에 비하여 초고압 처리한 홍삼에서 10.46% 증가하였다. DPPH 및 ABTS 라디칼 소거 활성을 측정한 결과, 열수 추출물의 농도가 증가함에 따라 DPPH 및 ABTS 라디칼 소거 활성이 증가하는 경향을 보였으며 초고압 처리 홍삼이 일반 홍삼 열수 추출물에 비해 높은 라디칼 소거 활성을 보였다. 환원력과 FRAP 활성도 분획물의 농도가 증가함에 따라 환원력과 FRAP 활성이 증가하는 경향을 보였으며, 일반 홍삼과 초고압 처리 홍삼 열수 추출물의 FRAP 활성은 농도 10 mg/mL일 때 각각 0.30 및 0.36의 흡광도를 보였다. 따라서 초고압 처리 홍삼 열수 추출물은 자유 라디칼에 의해 유발된 산화적 스트레스를 효과적으로 방어할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

Grant : 초고압 기술을 이용한 Global 홍삼제품 연구 개발

Supported by : 지식경제부

References

  1. Bae, K. C. and S. H. Kim. 1998. Antioxidant effects of Korea ginseng radix, Korea red ginseng radix and total saponin. Korean J. Oriental Medical Pathology 12: 72-81.
  2. Benzie, I. F. F. and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power". The FRAP assay. Anal. Biochem. 239: 70-79. https://doi.org/10.1006/abio.1996.0292
  3. Berlin, D. L., D. S. Herson, D. T. Hicks, and D. G. Hoover. 1999. Response of pathogenic Vibrio species to high hydrostatic pressure. Appl. Environ. Microbiol. 65: 2776-2780.
  4. Biglari, F., A. F. M. Aikarkhi, and A. M. Easa. 2008. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107: 1636-1641. https://doi.org/10.1016/j.foodchem.2007.10.033
  5. Blois, M. A. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-200. https://doi.org/10.1038/1811199a0
  6. Boo, H. O., H. H. Lee, J. W. Lee, S. J. Hwang, and S. U. Park. 2009. Different of total phenolics and flavonoids, radical scavenging activities and nitrite scavenging effects of Momordica charantia L. according to cultivars. Korean J. Medicinal Crop Sci. 17: 15-20.
  7. Hoover, D. G. 1993. Pressure effects on biological systems. Food Technol. 47: 150-161.
  8. Horie, Y., K. Kimura, M. Ida, Y. Yosida, and K. Ohki. 1991. Jam preparation by pressurization. Nippon Nogeikagaku Kaishi 65: 975-980. https://doi.org/10.1271/nogeikagaku1924.65.975
  9. Hu, S. Y. 1976. The genus Panax (Ginseng) in Chinese medicine. Economic Botany 30: 11-28. https://doi.org/10.1007/BF02866780
  10. Hwang, E. Y., Y. H. Kong, Y. C. Lee, Y. C. Kim, K. M. Yoo, Y. O. Jo, and S. Y. Choi. 2006. Comparison of phenolic compounds contents between white and red ginseng and their inhibitory effect on melanin biosynthesis. J. Ginseng Res. 30: 82-87. https://doi.org/10.5142/JGR.2006.30.2.082
  11. In, J. G., E. J. Kim, B. S. Lee, M. H. Park, and D. C. Yang. 2006. Saponin analysis and red ginseng production using the simplified method of Korean ginseng (Panax ginseng C.A. Meyer). Korean J. Plant Res. 19: 133-138.
  12. In, J. G., B. S. Lee, E. J. Kim, M. H. Park, and D. C. Yang. 2006. Increase of functional saponin by acidic treatment and temperature of red ginseng extract. Korean J. Plant Res. 19: 139-143.
  13. Jeon, B. H., H. S. Kim, and S. J. Chang. 1999. Effect of saponin and non-saponin of Panax ginseng on the blood pressure in the renovascular hypertensive rats. J. Ginseng Res. 23: 81-87.
  14. Jung, K. Y., D. S. Kim, S. R. Oh, I. S. Lee, J. J. Lee, J. D. Park, S. I. Kim, and H. K. Lee. 1998. Platelet activating factor antagonist activity of ginsenosides. Biol. Pharm. Bull. 21: 79-80. https://doi.org/10.1248/bpb.21.79
  15. Keum, Y. S., K. K. Park, J. M. Lee, K. S. Chun, J. H. Park, S. K. Lee, H. Kwon, and Y. J. Surh. 2000. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 150: 41-48. https://doi.org/10.1016/S0304-3835(99)00369-9
  16. Kim, D. H., K. H. Kwak, K. J. Lee, and S. J. Kim. 2004. Effects of Korea red ginseng total saponin on repeated unpredictable stress-induced changes of proliferation of neural progenitor cells and BDNF mRNA expression in adult rat hippocampus. J. Ginseng Res. 28: 94-103. https://doi.org/10.5142/JGR.2004.28.2.094
  17. Kim, K. H., Y. S. Lee, I. S. Jung, S. Y. Park, H. Y. Chung, I. R. Lee, and Y. S. Yun. 1998. Acidic polysacchride from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rII-2. Plant Medica 64: 110-115. https://doi.org/10.1055/s-2006-957385
  18. Kim, K. Y., J. K. Shin, S. W. Lee, S. R. Yoon, H. S. Chung, Y. J. Jeong, M. S. Choi, C. M. Lee, K. D. Moo, and J. H. Kwon, 2007. Quality and functional properties of red ginseng prepared with different steaming time and drying methods. Korean J. Food Sci. Technol. 39: 494-499.
  19. Kim, D. O., S. W. Jeong, and C. Y. Lee. 2003. Antioxidant capacity of phenolic phytochemical from various cultivars of plums. Food Chem. 81: 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  20. Kitagawa, I. 1983. Chemical studies on crude drug processing. I. On constituents of ginseng radix rubra (1). Yakugaku Zasshi 103: 612-622.
  21. Lee, C. R., W. K. Whang, C. G. Shin, H. S. Lee, S. T. Han, B. O. Im, and S. K. Ko. 2004. Comparison of composition and contents in fresh ginseng roots cultivated in Korea, Japan, and China at various ages. Korean J. Food Sci. Technol. 36: 847-850.
  22. Lee, D. U., J. Y. Park, J. I. Kang, and I. H. Yeo. 1996. Effect of high hydrostatic pressure on the shelf-life and sensory characteristics of Angelica keiskei juice. Korean J. Food Sci. Technol. 28: 105-108.
  23. Lim, S. B., M. K. Jwa, C. Mok, Y. S. Park, and G. J. Woo. 2004. Changes in microbial counts, enzyme activity and quality of foxtail millet Takju treated with high hydrostatic pressure during storage. Korean J. Food Sci. Technol. 36: 233-238.
  24. Ng, T. B., and H. Wang. 2001. Panaxagin, a new protein from Chinese ginseng possesses antifungal, anti-viral, translation-inhibition and ribonuclease activities. Life Science 68: 739-749. https://doi.org/10.1016/S0024-3205(00)00970-X
  25. Ohshima, T., H. Ushio, and C. Koizumi. 1993. High pressure processing of fish and fish products. Trends Food Sci. Technol. 4: 370-375. https://doi.org/10.1016/0924-2244(93)90019-7
  26. Park, H. J., K. Y. Kim, G. J. Han, and H. S. Jeong. 2007. Quality of jujube wine with hydrostatic pressure and freezing treatment. J. Korean Soc. Food Sci. Nutr. 36: 1444-1450. https://doi.org/10.3746/jkfn.2007.36.11.1444
  27. Park, H. J., K. Y. Kim, and H. S. Jeong. 2009. Quality changes of jujube wine by hydrostatic pressure and freezing treatment during storage. J. Korean Soc. Food Sci. Nutr. 38: 89-97. https://doi.org/10.3746/jkfn.2009.38.1.089
  28. Park, S. Y., I. Jung, T. L. Jung, and M. K. Park. 2001. Difference between steaming and decocting ginseng. J. Ginseng Res. 25: 37-40.
  29. Park, W. J., M. K. Jwa, S. H. Hyun, S. B. Lin, and D. J. Song. 2006a. High hydrostatic pressure sterilization of Vibrio parahaemolyticus and Escherichia coli in raw oyster. J. Korean Soc. Food Sci. Nutr. 35: 935-939. https://doi.org/10.3746/jkfn.2006.35.7.935
  30. Park, W. J., M. K. Jwa, S. H. Hyun, S. B. Lin, and D. J. Song. 2006b. Microbial and quality changes during storage of raw oyster treated with high hydrostatic pressure. J. Korean Soc. Food Sci. Nutr. 35: 1449-1455. https://doi.org/10.3746/jkfn.2006.35.10.1449
  31. Petkov, V. D., and A. H. Mosharrof. 1987. Effects of standardized ginseng extract on learning, memory and physical capabilities. Am. J. Clin. Med. 15: 19-29. https://doi.org/10.1142/S0192415X87000047
  32. Ryu, K. H. 2003. Present status of red ginseng products and its manufacturing process. Food Industry and Nutrition 8: 38-42.
  33. Shin, J. H., M. J. Kang, S. J. Lee, S. M. Yang, G. H. Rue, and N. J. Sung. 2009. Biological activities of dried garlic, red ginseng and their mixture. J. Korean Soc. Food Sci. Nutr. 38: 1633-1639. https://doi.org/10.3746/jkfn.2009.38.12.1633
  34. Smelt, J. P. P. M. 1998. Recent advances in the microbilogy of high pressure processing. Trends Food Sci. Technol. 9: 152-158. https://doi.org/10.1016/S0924-2244(98)00030-2
  35. Sonoda, Y., T. Ksahara, N. Mukaida, N. Shimizu, M. Tomoda, and T. Takeda. 1998. Stimulation of interlukin-8-production by acidic polysaccharides from the root of Panax ginseng. Immunopharmacol. 38: 287-293. https://doi.org/10.1016/S0162-3109(97)00091-X
  36. Styles, M. F., D. G. Hoover, and D. F. Farkas. 1991. Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J. Food Sci. 56: 1404-1407. https://doi.org/10.1111/j.1365-2621.1991.tb04784.x
  37. Wee, J. J., J. D. Park, M. W. Kim, and H. J. Lee. 1989. Identification of phenolic antioxidant components isolated from Panax ginseng. J. Korean Agric. Chem. Soc. 32: 50-56.
  38. Yen, G. H. and H. Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 45: 27-32.
  39. Yoshino, M. and K. Murakami. 1998. Interaction of iron with polyphenolic compounds, application to antioxidant characterization. Anal. Biochem. 257: 40-44. https://doi.org/10.1006/abio.1997.2522
  40. Yun, T. K., Y. S. Lee, Y. H. Lee, and H. Y. Yun. 2001. Cancer chemopreventive compounds of red ginseng produced from Panax ginseng C.A. Meyer. J. Ginseng Res. 25: 107-111.