Research Review of the All Vanadium Redox-flow Battery for Large Scale Power Storage

대용량 전력저장용 바나듐 레독스-흐름 전지 연구동향

  • 최호상 (경일대학교 화학공학과) ;
  • 김재철 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2011.05.31
  • Accepted : 2011.06.17
  • Published : 2011.06.30

Abstract

The all vanadium redox-flow battery (V-RFB) is investigating as one of large-scale power storage systems. Particularly, V-RFB is being investigated as one of the power storage systems for the load leveling and output power equalization of the power systems using renewable energy such as solar and wind. In this paper, it was explained for the principle and construction, recent research review, economy, element technology in V-RFB.

바나듐 레독스-흐름 전지 (V-RFB)는 대용량 전력저장 시스템의 하나로 연구가 많이 진행되고 있다. 특히 최근에 지구온난화의 해결을 위한 태양광, 풍력 발전 등 재생에너지에 의한 발전과 함께 이 전력 원들의 부하 평준화 및 전력 공급 원활화 등을 위한 전력 저장 시스템의 하나로 주목을 받고 있다. 본 총설에서는 V-RFB 에 대한 원리 및 구성, 최근 연구 동향, 경제성, 요소기술에 대해 설명하고자 한다.

Keywords

References

  1. C.-H. Ryu, G.-J. Hwang, and J.-C. Kim, "Review of redox-flow battery for the large-scale power storage connect with renewable energy", National IT Industry Promotion Agency, TIS-10-35, 29 (2010).
  2. M. Watanabe, "スマ一トグりッド", 長岡技術科學大學 講演資料, 2010. 11.
  3. T. Horie, Y. Ishida, and H. Fujioka, "New Trends in Power Storage Systems", NTT Building Technology Institute, Engineering report (2004).
  4. G.-J. Hwang, A.-S. Kang, and Haruhiko Ohya, "Review of the redox-flow secondary battery", Chemical Industry and Technology, 16(5), 455 (1998).
  5. 池內貞廣, 高橋光夫, "分散型電源設備の動向と省ェネルギ一對策", 總合設備コンサルタント技術年報, 28, 12 (2002).
  6. SUMITOMO ELECTRIC INDUSTR INDUSTRIES, Ltd., "Vanadium redox-flow battery (V-RFB) for a variety of applications", Presentation paper (2002).
  7. M. Skyllas-kazacos and F. Grossmith, "Efficient vanadium redox flow battery", J. Electrochem. Soc., 134(12), 2950 (1987). https://doi.org/10.1149/1.2100321
  8. H. Tasai, T. Horigome, N. Nozaki, H. Kaneko, A. Negishi, and Y.Wada, "Characteristics of vanadium redox cell", 31回 電池討論公演會 要旨集, Japan, p.301 (1990).
  9. M. Skyllas-kazacos, D. Kasherman, D. R. Hong, and M. Kazacos, "Characteristics and performance of 1 kW UNSW vanadium redox battery", J. Power Sources, 35, 399 (1991). https://doi.org/10.1016/0378-7753(91)80058-6
  10. F. Grossmith, P. Llewellyn, A. G. Fane, and M. Skyllas-kazacos, "Evaluation of membranes for all-vanadium redox cell", Proc. Electrochem. Soc. Symp., Honolulu, Oct., p.363 (1988).
  11. G.-J. Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 120, 55 (1996). https://doi.org/10.1016/0376-7388(96)00135-4
  12. G.-J. Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membr. Sci., 132(1), 55 (1997). https://doi.org/10.1016/S0376-7388(97)00040-9
  13. J.-G. Kim, S.-R. Lee, S.-I Choi, C.-S. Jin, J.-C. Kim, C.-H Ryu, and G.-J. Hwang, "Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery", J. Ind. Eng. Chem., 16, 756 (2010). https://doi.org/10.1016/j.jiec.2010.07.007
  14. http://www.meti.go.jp/press/20080305001/20080305001.html, March 5 (2008).
  15. SUMITOMO ELECTRIC INDUSTRIES, Ltd., "Power system solution with Vanadium redox-flow battery (V-RFB)", Presentation paper, 2010.
  16. NEDO Report, "風力發電電力系統安定化等技術開發 -經年特性分析硏究-", 2010.3.
  17. G.-J. Hwang, "Vanadium redox-flow battery", Global SAMSUNG Tech. Conference 2008, Energy Forum 2008, 2008.11.
  18. EPRI Discussion paper, "The power to reduce $CO_2$ emissions, The full portfolio", 2007.8.
  19. http://www.arpa-e.energy.gov/, 2010.
  20. D. C. Liddell, "Comments of strategen consulting llc and VRB Power Systems Inc. on demand response and the energy commission's load management authority", Integrated Energy Policy Report, Docket No. 06-IEP-1E, June 15 (2007).
  21. A. Jossen and D. U. Sauer, "Advances in Redox-Flow Batteries", First International Renewable Energy Storage Conference, Gelsenkirchen, 30-31 Oct,. Germany, 2006.
  22. http://www.pikeresearch.com/research/energy-storage-on-the-grid, September 3 (2010).
  23. H. Ohya, K. Minamihira, G.-J. Hwang, T. Kuwahara, A. S. Kang, M. Aihara, and Y. Negishi, "Studies on membrane forredox flow battery IX. Cross-linking of tile membrane by theelectron radiation and durability of the membrane, Denkikagaku, 63(11), 1033 (1995).
  24. G.-J. Hwang, H. Ohya, and T. Nagai, "Ion exchange membrane based on block copolymer PartIII. preparation of cation exchange membrane", J. Membr. Sci., 156, 61 (1999). https://doi.org/10.1016/S0376-7388(98)00331-7
  25. G.-J. Hwang and H. Ohya, "Preparation of anion exchange membrane based on block copolymers Part 1; Amination of the chloromethylated copolymers", J. Membr. Sci., 140, 195 (1998). https://doi.org/10.1016/S0376-7388(97)00283-4
  26. S.-R. Choi, S.-J. Park, B.-K. Seo, K. W. Lee, S. T. Nam, and M.-J. Han, "Effect of propionic acid additive on preparation of phase inversion polysulfone membrane", Membrane Journal, 18(4), 317 (2008).
  27. H. S. Cheon, M. Oh, and S. U. Hong, "Preparation and their characterization of blended polymer electrolyte membranes of polysulfone and poly(ether ether ketone)", Membrane Journal, 13(1), 47 (2003).
  28. D. J. Kim, H. Y. Hwang, H. J. Kim, and S. Y. Nam, "Preparation and characterization of polysulfone substrate for reinforced composite membrane fuel cell membrane", Membrane Journal, 19(1), 63 (2009).
  29. I.-Y. Jang, O.-R. Kweon, K.-E. Kim, G.-J. Hwang, S.-B. Moon, and A.-S. Kang, "Application of polysulfone (PSf)- and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis", J. Membr. Sci., 322(1), 154 (2008). https://doi.org/10.1016/j.memsci.2008.05.028
  30. J. Qiu, J. Zhang, J. Chen, J. Peng, L. Xu, M. Zhai, J. Li, and G. Wei, "Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications", J. Membr. Sci., 334, 9 (2009). https://doi.org/10.1016/j.memsci.2009.02.009
  31. D. Cheum S. Wang, M. Xiao, and Y. Meng, "Preparation and properties of sulfonated poly(fluorenyl ether ketone) membrane for vanadium redox flow battery application", J. Power Sources, 195, 2089 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.010
  32. G.-J. Hwang and H. Ohya, "Unpublished data", (1996).
  33. B. Tian, C.-W. Yan, and F.-H. Wang, "Modification and evaluation of membranes for vanadium redox flow battery applications", J. Applied Electrochemistry, 34(12), 1205 (2004). https://doi.org/10.1007/s10800-004-1765-2
  34. S. Zhang, C. Yin, D. Xing, D. Yang, and X. Jian, "Preparation of chloromethylated/quatemized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications", J. Membr. Sci., 363, 243 (2010). https://doi.org/10.1016/j.memsci.2010.07.046