DOI QR코드

DOI QR Code

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming

쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교

  • Ryu, Jong-Hee (National Academy of Agricultural Science, RDA) ;
  • Kwon, Young-Rip (Jeollabuk-Do Agricultural Reasearch and Extension Services) ;
  • Kim, Gun-Yeob (National Academy of Agricultural Science, RDA) ;
  • Lee, Jong-Sik (National Academy of Agricultural Science, RDA) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, The University of Seoul) ;
  • So, Kyu-Ho (National Academy of Agricultural Science, RDA)
  • 유종희 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 권영립 (전북농업기술원) ;
  • 김건엽 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 이종식 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 김계훈 (서울시립대학교 환경원예학과) ;
  • 소규호 (국립농업과학원 농업환경부 기후변화생태과)
  • Received : 2012.10.31
  • Accepted : 2012.11.27
  • Published : 2012.12.31

Abstract

This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.

2011년 전북 군산과 익산 지역의 관행농, 무농약, 유기농 농가를 대상으로 영농방법별로 쌀 생산 과정 중 투입 배출되는 물질 목록을 면접조사하여 전과정평가를 수행하고 쌀 생산체계에 대한 영농방법별 환경영향을 평가하고 탄소배출량을 비교 분석하였다. 전과정 목록분석 결과 $CO_2$ 배출은 화학비료 생산과 벼 재배단계에서 가장 많았고, $CH_4$$N_2O$ 배출은 대부분 벼 재배 중에 발생되었다. 쌀 (조곡) 1 kg 생산을 기준으로 하는 탄소성적은 관행농이 1.01E+00 $CO_2$-eq. $kg^{-1}$로 가장 높았고, 무농약이 5.37E-01 $CO_2$-eq. $kg^{-1}$, 유기농법이 6.58E-01 $CO_2$-eq. $kg^{-1}$였다. 농자재 투입량이 가장 적었던 무농약 쌀 생산에서 탄소성적이 가장 낮았고, 생산량은 가장 적었지만 복비투입이 없었던 유기농이 관행농보다 탄소성적이 낮았다. 관행농과 무농약 쌀 생산체계에서 온실가스 배출 주요 요인은 복비생산과 벼 재배 중 $CH_4$ 발생이었고, 유기농에서는 벼 재배 중 농기계 연료사용과 논토양 $CH_4$ 발생이었다. 그러므로 온실가스 감축을 위한 영농방법 활용으로 복합비료 적정량 사용을 위한 맞춤형 비료의 권장 및 벼논 물관리에 의한 메탄발생 저감방법 등을 제안하며, 더불어 유기농법에서는 수확량 향상을 위한 생산 효율성 증대와, 벼 재배 단계에서 농기계 연료 효율성 증대 활용에 관한 연구가 요구되었다.

Keywords

References

  1. Basset-Mens, C., H.M.G. van der Werf, P. Robin, Th. Morvan, M. Hassouna, J.M. Paillat, and F. vertes. 2007. Methods and data for the environmental inventory of contrasting pig production system. J. Cleaner Prod. 15:1395-1405. https://doi.org/10.1016/j.jclepro.2006.03.009
  2. Bllengini, G.A. and M. Busto. 2009. The life cycle of rice; LCA of alternative agri-food chain management system in Vercelli (Italy). J. Environ. Manag. 90:1512-1522. https://doi.org/10.1016/j.jenvman.2008.10.006
  3. de Boer, I.J.M. 2003. Environmental impact assessment of conventional and organic milk production. Livestock Production Science 80:69-77. https://doi.org/10.1016/S0301-6226(02)00322-6
  4. Hokazono, S. and K. Hayashi. 2012. Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. J. Cleaner Prod. 28:101-112. https://doi.org/10.1016/j.jclepro.2011.12.005
  5. ISO (International Organization for Standardization), 1997. Environmental management-life cycle assessment-principles and framework. International Standard ISO 14040, ISO, Geneva
  6. Jeong, H.C., G.Y. Kim, D.B. Lee, K.M. Shim, and K.K. Kang. 2011. Assessment of greenhpuse gases emission of agronomic sector between 1996 and 2006 IPCC guidelines. Korean J. Soil Sci. Fert. 44(6):1214-1219. https://doi.org/10.7745/KJSSF.2011.44.6.1214
  7. Jung, S.H., J.A. Park, J.H. Huh, and K.H. So. 2011. Estimation of greenhouse gas emission of complex fertilizers production system by using life cycle assessment. Korean. J. Soil. Sci. Fert. 44(2):256-262. https://doi.org/10.7745/KJSSF.2011.44.2.256
  8. KWA (Korea Waste Association). 2007. Agricultural waste data. Korea Waste Association. Seoul, Korea.
  9. Kwon, O.D., H.G. Park, K.N. An, Y. Lee, S.H. Shin, G.H. Shin, H.R. Shin, and Y.I. Kuk. 2010. Effect of various organic materials on weed control in environment-friendly rice paddy fields. Kor. J. Sci. 30(3):272-281. https://doi.org/10.5660/KJWS.2010.30.3.272
  10. Lee, S.B., M.H. Koh, Y.E. Na, and J.H. Kim. 2002. Physiological and ecological characteristics of the apple snails. Korean J. Environ. Agri. 21(1):50-56. https://doi.org/10.5338/KJEA.2002.21.1.050
  11. Lee, S.G., Y.H. Lee, J.S. Kim, B.M. Lee, M.J. Kim, J.H. Shin, H.M. Kim, and D.H. Choi. 2005. Diseases and weeds occurrence and control in organic and conventional rice paddy field. Korean J. Org. Agri. 13(3): 291-300.
  12. MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheres). 2004. A study on establishing effective management system for equipped agricultural input wastes. C2004-A1. Ministry for Food, Agriculture, Forestry and Fisheres. Seoul, Korea.
  13. MKE (Ministry of Knowledge Economy). Software program PASS v.4.1.3.
  14. NAPQMS. (National agricultural product quality management service). 2010. Report of national agricultural products quality management service. Anyang, Korea.
  15. Ryu, J.H., K.H. Kim, G.Y. Kim, K.H. So, and K.K. Kang. 2011. Application of LCA on lettuce cropping system by bottom-up methodology in protected cultivation. Korean J. Soil Sci. Fert. 44(6):1195-1206. https://doi.org/10.7745/KJSSF.2011.44.6.1195
  16. Ryu, J.H., K.H. Kim, K.H. So, G.Z. Lee, G.Y. Kim, and D.B. Lee. 2011. LCA on lettuce cropping system by top-down method in protected cultivation. Korean J. Soil Sci. Fert. 44(6):1185-1194. https://doi.org/10.7745/KJSSF.2011.44.6.1185
  17. So, K.H., J.A. Park, G.Z. Lee, K.M. Shim, J.H. Ryu, and K.A. Roh. 2010. Estimation of carbon emission and application of LCA (Life Cycle Assessment) from rice (Oryza sativa L.) production system. Korean J. Soil. Sci. 43(5): 716-721.
  18. van Zeijts, H., H. Leheman, and A.W. Sleeswijk. 1999. Fitting fertilisation in LCA: allocation to carops in a cropping plan. J. Cleaner Prod. 7:69-74. https://doi.org/10.1016/S0959-6526(98)00040-7

Cited by

  1. Assessment of Rice Cultivation in Rural Areas from E3 (Energy, Environment, and Economy) Perspectives vol.21, pp.1, 2015, https://doi.org/10.7851/ksrp.2015.21.1.001
  2. Analysis on Correlation between CO2Emissions and Production, Acreage of Crops using Environmental Input-Output Analysis vol.56, pp.1, 2014, https://doi.org/10.5389/KSAE.2014.56.1.061
  3. A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Rice Production System in Farming without Agricultural Chemicals vol.47, pp.5, 2014, https://doi.org/10.7745/KJSSF.2014.47.5.374