DOI QR코드

DOI QR Code

Effects of oxyfluorination on a multi-walled carbon nanotube electrode for a high-performance glucose sensor

  • Yu, Hye-Ryeon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E M, Chungnam National University) ;
  • Kim, Jong Gu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E M, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E M, Chungnam National University) ;
  • Bae, Tae-Sung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E M, Chungnam National University)
  • Published : 2012.03.25

Abstract

A glucose sensor electrode was prepared with multi-walled carbon nanotubes (MWNTs) because of its effect on surface modification through oxyfluorination. The oxyfluorination of MWNTs was carried out with $F_2:O_2$ ratios of 7:3, 5:5 and 3:7, which are labeled F7O3-MWNT, F5O5-MWNT, and F3O7-MWNT, based on the oxyfluorination conditions. The hydrophilic functional groups were introduced effectively on the hydrophobic carbon surface. In addition, the amorphous area of the MWNTs was affected by oxyfluorination. The reactivity of the glucose sensor was affected by the oxyfluorination treatment and the existence of amorphous on MWNTs. The optimum O/F percentage was approximately 50%. Therefore, the oxyfluorination conditions are important with amorphous MWNTs. The sensitivity was improved based on the effects of improved interface affinity between the enzyme and the carbon electrode. In addition, the presence of an amorphous area on MWNTs seems to be beneficial for efficient glucose oxidase immobilization, which results in high-performance glucose sensing.

Keywords

References

  1. F. Xu, F. Wang, M.N. Gao, L.T. Jin, J.Y. Jin, Talanta 57 (2002) 365. https://doi.org/10.1016/S0039-9140(02)00038-3
  2. V. Lopez-Avila, H.H. Hill, Anal. Chem. 69 (1997) 289. https://doi.org/10.1021/a19700121
  3. J.V.D. Melo, S. Cosnier, C. Mousty, C. Martelet, N. Jaffrezic-Renaulta, Anal. Chem. 74 (2002) 4037. https://doi.org/10.1021/ac025627+
  4. L.C. Clark Jr., C. Lyons, Ann. N. Y. Acad. Sci. 102 (1962) 29.
  5. C.C. Liu, E.J. Lahoda, R.T. Galasco, L.B. Wingard, Biotechnol. Bioeng. 17 (1975) 1695. https://doi.org/10.1002/bit.260171111
  6. D. Savitri, C.K. Mitra, Bioelectrochemistry 47 (1) (1998) 67. https://doi.org/10.1016/S0302-4598(98)00158-5
  7. E.J. Lahoda, C.C. Liu, L.B. Wingard, Biotechnol. Bioeng. 17 (1975) 413. https://doi.org/10.1002/bit.260170309
  8. Z. Rosenzweig, R. Kopelman, Sens. Actuators B: Chem. (1996) 475.
  9. A.A. Manedov, N.A. Kotov, M. Prato, K.M. Guldi, J.P. Wichksted, A. Hirsch, Nat. Mater. 1 (3) (2002) 190. https://doi.org/10.1038/nmat747
  10. T. Zeng, T. Claus, F. Zhang, W. Du, K.L. Cooper, Smart Mater. Struct. 10 (2001) 780. https://doi.org/10.1088/0964-1726/10/4/323
  11. T. Saito, K. Matsushige, K. Tanake, Physica B 323 (2002) 280. https://doi.org/10.1016/S0921-4526(02)00999-7
  12. G. Zheming, L. Chunzhong, W. Gengchao, Z. Ling, C. Qilin, L. Xiaohui, J. Korean Ind. Eng. Chem. 16 (1) (2010) 10. https://doi.org/10.1016/j.jiec.2010.01.028
  13. Y.Y. Kim, J. Yun, Y.S. Lee, H.I. Kim, Carbon Lett. 12 (1) (2011) 48. https://doi.org/10.5714/CL.2011.12.1.048
  14. J.M. Lee, S.J. Kim, J.W. Lim, T.H. Kang, Y.C. Nho, Y.S. Lee, J. Korean Ind. Eng. Chem. 15 (2009) 66. https://doi.org/10.1016/j.jiec.2008.08.010
  15. T. Cheng, H. Lin, M. Chuang, Mater. Lett. 58 (2004) 650. https://doi.org/10.1016/S0167-577X(03)00586-X
  16. T. Seguchi, T. Yagi, S. Ishikawa, Y. Sano, Phys. Chem. 63 (2002) 35.
  17. M.J. Jung, J.W. Lim, I.J. Park, Y.S. Lee, Appl. Chem. Eng. 21 (3) (2010) 317.
  18. J.S. Im, S.J. Kim, P.H. Kang, Y.S. Lee, J. Korean Ind. Eng. Chem. 15 (2009) 699. https://doi.org/10.1016/j.jiec.2009.09.048
  19. M. Anand, J.P. Hobbs, I.J. Brass, R.E. Banks, B.E. Smart, J.C. Tatlow, Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, 1994
  20. Y.S. Lee, B.K. Lee, Carbon 40 (2002) 2461. https://doi.org/10.1016/S0008-6223(02)00152-5
  21. J.S. Im, S.J. Park, Y.S. Lee, Int. J. Hydrogen Energy 34 (3) (2009) 1423. https://doi.org/10.1016/j.ijhydene.2008.11.054
  22. R. Wilson, A.P.F. Turner, Biosens. Bioelectron. 7 (1992) 165. https://doi.org/10.1016/0956-5663(92)87013-F
  23. Z. Wu, J. Li, D. Timmer, K. Lozano, S. Bose, Int. J. Adhes. Adhes. 29 (5) (2009) 488. https://doi.org/10.1016/j.ijadhadh.2008.10.003
  24. T. Nakajima, Fluorine-Carbon and Fluorine-Carbon Materials, Marcel Dekker, New York, 1995.
  25. S.J. Park, M.K. Seo, Y.S. Lee, Carbon 41 (2003) 723. https://doi.org/10.1016/S0008-6223(02)00384-6
  26. J.M. Lee, J.W. Kim, J.S. Lim, T.J. Kim, S.D. Kim, S.J. Park, Y.S. Lee, Carbon Lett. 8 (2) (2007) 120. https://doi.org/10.5714/CL.2007.8.2.120
  27. A. Misra, A.K. Tyagi, M.K. Singh, D.S. Misra, Diamond Relat. Mater. 15 (2006) 385. https://doi.org/10.1016/j.diamond.2005.08.013
  28. B. Kim, W.M. Sigmund, Langmuir 20 (2004) 8239. https://doi.org/10.1021/la049424n
  29. R.A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, Chem. Phys. Lett. 414 (2005) 6. https://doi.org/10.1016/j.cplett.2005.08.040
  30. L. Zhang, V. Liao, Z. Yu, Carbon 48 (2010) 2582. https://doi.org/10.1016/j.carbon.2010.03.061
  31. J.S. Im, S.C. Kang, B.C. Bai, J.K. Suh, Y.S. Lee, Int. J. Hydrogen Energy 36 (2011) 1560. https://doi.org/10.1016/j.ijhydene.2010.10.024
  32. J. Wang, Chem. Rev. 108 (2) (2008) 814. https://doi.org/10.1021/cr068123a
  33. R. Khan, A. Kaushik, P.R. Solanki, A.A. Ansari, M.K. Pandey, B.D. Malhotra, Anal. Chem. Acta 616 (2008) 207. https://doi.org/10.1016/j.aca.2008.04.010
  34. X. Liu, Y. Peng, X. Qu, S. Ai, R. Han, X. Zhu, J. Electroanal. Chem. 654 (2011) 72. https://doi.org/10.1016/j.jelechem.2011.01.024
  35. S. Saha, S.K. Arya, S.P. Singh, K. Sreenivas, B.D. Malhotra, V. Gupta, Anal. Chim. Acta 653 (2009) 212. https://doi.org/10.1016/j.aca.2009.09.002

Cited by

  1. Multifunctional surface modification of an aramid fabric via direct fluorination vol.141, pp.None, 2012, https://doi.org/10.1016/j.jfluchem.2012.06.010
  2. 폴리프로필렌 부직포 섬유의 열, 항균 및 원적외선 방사 특성에 미치는 불소화 일라이트 첨가의 영향 vol.37, pp.1, 2012, https://doi.org/10.7317/pk.2013.37.1.86
  3. 불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향 vol.37, pp.3, 2012, https://doi.org/10.7317/pk.2013.37.3.316
  4. 폴리아크릴로니트릴계 활성나노탄소섬유의 기공특성이 이산화탄소 흡착에 미치는 영향 vol.37, pp.5, 2013, https://doi.org/10.7317/pk.2013.37.5.592
  5. 새로운 가교제를 적용한 촉매를 이용한 글루코스 센서의 성능향상 연구 vol.53, pp.6, 2012, https://doi.org/10.9713/kcer.2015.53.6.802
  6. 그래핀 옥사이드가 탄소나노튜브기반 바이오센서 전극의 포도당 산화효소 담지능및 민감도에 미치는 영향 vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1114
  7. 글루코스 기반 바이오연료전지를 위한 다양한 분자량의 폴리에틸렌이민을 이용한 글루코스 산화효소 고정화 vol.54, pp.5, 2016, https://doi.org/10.9713/kcer.2016.54.5.693
  8. Glucose oxidase and polyacrylic acid based water swellable enzyme-polymer conjugates for promoting glucose detection vol.9, pp.41, 2017, https://doi.org/10.1039/c7nr05545e
  9. 프탈로시아닌계 안료의 함산소불소화가 수분산 특성에 미치는 영향 vol.29, pp.4, 2017, https://doi.org/10.5764/tcf.2017.29.4.195
  10. 탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향 vol.30, pp.2, 2012, https://doi.org/10.14478/ace.2018.1125