DOI QR코드

DOI QR Code

Effect of Particle Size on Antioxidant Activity and Cytotoxicity in Purple Corn Seed Powder

검정찰옥수수 종실 분쇄 정도에 따른 항산화 및 Cytotoxicity 활성 효과

  • 김정태 (농촌진흥청 국립식량과학원) ;
  • 손범영 (농촌진흥청 국립식량과학원) ;
  • 이진석 (농촌진흥청 국립식량과학원) ;
  • 백성범 (농촌진흥청 국립식량과학원) ;
  • 우관식 (농촌진흥청 국립식량과학원 기능성작물부) ;
  • 정건호 (농촌진흥청 국립식량과학원) ;
  • 김미정 (농촌진흥청 국립식량과학원) ;
  • 정광호 (농촌진흥청 국립식량과학원) ;
  • 권영업 (농촌진흥청 국립식량과학원)
  • Received : 2012.07.20
  • Accepted : 2012.10.24
  • Published : 2012.12.31

Abstract

This study was carried out to evaluate antioxidant and anticancer activity of crudes extracts from colored corn (Zea mays. L.) among particle size with different pulverizing methods (pin mill and ultra fine pulverizer). In cytotoxicity test using extracts from the flours grounded by pin mill and ultra fine pulverizer respectively, it showed that A-549 was the highest anticancer activity among in vitro using 4 cancer cell line types (Hep-G2, A-549, HCT-116 and MCF-7). Assessing the antioxidant activities of crude extracted from different pulverizing methods was measured by trolox equivalent antioxidant capacity (TEAC) and ferric reducing antioxidant power (FRAP). Higher scanvening activity against free radical was observed in the crude extracted from small particle size flours of colored corn than in those of the big particle size.

본 연구에서는 검정찰옥수수 종실을 일반분쇄와 저온미세분쇄를 하여 입자크기에 따른 항산화 활성과 cytotoxicity를 평가하여 이용성 증진을 하고자 연구를 수행하였다. 본 연구의 결과를 요약하면 다음과 같다. 1. 분쇄 정도에 따른 평균값은 일반분쇄가 $473.7{\mu}m$, 저온미세분쇄 $17.2{\mu}m$이었으며 중간값은 $336.9{\mu}m$$13.4{\mu}m$를 나타내었다. 2. TEAC 활성 측정 결과 일반분쇄는 $3.87{\mu}mol$ TE/g로서 저온미세분쇄 $5.15{\mu}mol$ TE/g보다 낮은 활성을 보였다. FRAP 활성 측정에서는 저온미세분쇄가 $10.08{\mu}mol$ Fe(II)/g로 일반분쇄 $8.86{\mu}mol$ Fe(II)/g보다 높은 활성을 보였다 3. 간암 세포주(Hep-G2) 성장억제에 미치는 영향은 1 mg/ml 농도에서 검정찰옥수수 종실을 일반분쇄(31.48%)한 것보다 저온미세분쇄(27.41%)를 한 경우가 암세포 생장 억제 효과를 큰 것으로 나타났다. 4. 대장암 세포주인 HCT-116에서는 1 mg/ml에서 분쇄정도에 따라 큰 차이를 보이지 않았으며, 유방암 세포주(MCF-7)에서는 일반분쇄가 미세분쇄보다 높은 생장억제를 보였다.

Keywords

References

  1. Cha, S. M., B. M. Son, J. S. Lee, S. B. Baek, S. L. Kim, J. H. Ku, J. J. Hwang, B. H. Song, S. H. Woo, Y. U. Kwon, and J. T. Kim. Effect of particle size on physico-chemical properties and antioxidant activity of corn silk powder. Korean J. Crop Sci. 57(1) : 41-50. https://doi.org/10.7740/kjcs.2012.57.1.041
  2. Coe Jr. E. H., Neuffer M. G., Hoisington D. A. 1988. The genetics of corn. In: Spague GF and Dudley JW (eds). Corn and corn improvement (3rd ed). pp. 83-258.
  3. Han M. R., A. J. Kim, M. J. Chang, S. J. Lee, H. S. Kim, and M. H. Kim. 2009. Investigation of physical property change in modified corn starch by ultra fine pulverization. Food Engine. Prog. 13, 335-340.
  4. Hou D. X., M. Fuji., N. Terahara, and M. Yoshimoto. 2004. Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J. Biomedicine and Biotechnology. 5. 321-325.
  5. Ishiyama, M, H. Tominaga, M. Shiga, K. Sasamoto, Y. Ohkura, and K. Ueno. 1996. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19 : 1518-1520. https://doi.org/10.1248/bpb.19.1518
  6. Kim D. W., K. S. Chang, U. H. Lee, and S. S. Kim. 1996. Moisture sorption characteristics of model food powders. Korean J. Food Sci. Technol. 28 : 1146-1150.
  7. Kim H. Y. 2010. Identification of the maize gene component responsible for the anthocyanin biosynthesis of kernel pericarp. Korean J. Breed Sci. 42(1) : 50-55.
  8. Kim H. Y., I. G. Hwang, T. M. Kim, D. J. Kim, D. S. Park, J. H. Kim, J. S. Lee, and H. S. Jeong. 2010. Antiproliferation effects of ethanol and water extracts from germinated rough rice. J Korean Soc Food Sci Nutr. 39(8) : 1107-1112. https://doi.org/10.3746/jkfn.2010.39.8.1107
  9. Kim S. L., E. H. Kim , Y. K. Son, J. C. Song, J. J. Hwang, and H. S. Hur. 1999. Identification of anthocyanin pigment in black waxy corn kernels. Korean J. Breed. 34(4) : 408-415.
  10. Kim S. L., J. J. Hwang, J. Song, J. C Song, and K. H. Jung. 2000 Extraction, purification, and quantification of anthocyanins in colored rice, black soybean, and black waxy corn. Krean J. Breed. 32(2) : 146-152.
  11. Kim, J. S., S. H. Lee, H. Y. Lee, K. H. Kim, and Y. I. Kim. 1993. Effects of different milling methods on physico-chemical properties and products. Korean J. Food Sci. Technol. 25 : 546-551.
  12. Ko J. W., W. Y. Lee, J. H. Lee, Y. S. Ha, and Y. H. Choi. 1999. Absorption characteristics of dried shiitake mushroom powder using different drying methods. Korean J Food Sci. Technol. 31 : 128-137.
  13. Koide T, Y. Hashimoto, H. Kamei, T. Kojima, M. Hasegawa, K. Terabe. 1997. Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo. Cancer Biother. Radio. 12 : 277-280.
  14. Ku K. M., S. K. Kim, and Y. H. Kang. 2009. Antioxidant activity and functional components of corn silk (Zea mays L.). Koren J. Plant Res. 22 : 323-329.
  15. Lee, Y. T., H. M. Seog, M. K. Cho, and S. S. Kim. 1996. Physicochemical properties of hull-less barley flours prepared with different grinding mills. Korea J. Food Nutr. 28 : 1078-1083.
  16. Lopez-Martinez L. X., R. M. Oliart-Ros, G. Valerio-Alfaro, C. H. Lee, K. L. Parkin, and H. S. Garcia. 2009. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. Food Science and Technology. 42 : 1187-1192
  17. Park D. J., K. H. Ku, and S. H. Kim. 1996. Characteristics and application of defected soybean meal fractions obtained by microparticulation air-classification. Korean J. Food Sci. Technol. 28 : 497-505.
  18. Park Y. K., H. M. Seong, Y. J. Nam, and D. H. Shin. 1988. Physicochemical properties of various milled rice flours. Korean J. Food Sci. Technol. 20 : 504-510.
  19. Hu Q. P. and J. G. Xu. 2011. profiles of carotenoids, anthocyanins, phenolics and antioxidant activity of selected color waxy corn grains during maturation. J. Agri. Food Chem. 2011 : 2026-2033
  20. Shu, T. S., G. Lee., Y. K. Seo, K. P. Lee, and D. J. Kim. 2004. Micro particle technology in food science. Food Science and Industry. 37(4) : 17-21
  21. Tsai, P. J. and C. H. Sheu. 2006. The significance of phenolprotein interactions in modifying the antioxidant capacity of pea. J. Agric. Food Chem. 54 : 8491-8494. https://doi.org/10.1021/jf061475y
  22. Wienand U. 1994. Anthocyanin biosynthesis in maize: a model system to study gene regulation. Proceedings of the 2nd Korea-Germany Joint Symposium in Plant Biotechnology. pp. 57-65.
  23. Yang Z. and W. Zhai. 2010. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science and Emerging Technologies. 11 : 169-176. https://doi.org/10.1016/j.ifset.2009.08.012

Cited by

  1. Proximate, Free Sugar, Fatty acids Composition and Anthocyanins of Saekso 2 Corn Kernels vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.335
  2. Effect of Saekso 2 Corn Kernels and Cobs Extracts on Antioxidant Activity in Rats Fed High Fat-cholesterol Diet vol.31, pp.6, 2016, https://doi.org/10.13103/JFHS.2016.31.6.399
  3. 자색옥수수 포엽과 속대 추출물의 리파아제 저해활성 및 3T3-L1 지방전구세포에서의 지방분화 억제효과 vol.33, pp.2, 2012, https://doi.org/10.13103/jfhs.2018.33.2.131
  4. 올레산 유도 비알코올성 지방간세포에서 자색옥수수 색소 1호 포엽과 속대 추출물의 지질 축적 억제 효과 vol.35, pp.1, 2012, https://doi.org/10.13103/jfhs.2020.35.1.93