DOI QR코드

DOI QR Code

Nickel-cobalt oxide/activated carbon composite electrodes for electrochemical capacitors

  • Chang, Sook-Keng (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia) ;
  • Zainal, Zulkarnain (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia) ;
  • Tan, Kar-Ban (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia) ;
  • Yusof, Nor Azah (Department of Chemistry, Faculty of Science, Universiti Putra Malaysia) ;
  • Yusoff, Wan Mohamad Daud Wan (Department of Physics, Faculty of Science, Universiti Putra Malaysia) ;
  • Prabaharan, S.R.S. (Department of Physics, Faculty of Science, Universiti Putra Malaysia)
  • Published : 2012.11.30

Abstract

Nanostructured synthesis of nickel-cobalt oxide/activated carbon composite by adapting a co-precipitation protocol was revealed by transmission electron microscopy. X-ray diffraction analysis confirmed that nickel-cobalt oxide spinel phase was maintained in the pure and composite phases. Cyclic voltammetry, galvanostatic charge-discharge tests and ac impedance spectroscopy were employed to elucidate the electrochemical properties of the composite electrodes in 1.0 M KCl. The specific capacitance which was the sum of double-layer capacitance of the activated carbon and pseudocapacitance of the metal oxide increased with the composition of nickel-cobalt oxide before showing a decrement for heavily-loaded electrodes. Utilisation of nickel-cobalt oxide component in the composite with 50 wt% loading displayed a capacitance value of ~59 F $g^{-1}$. The prepared composite electrodes exhibited good electrochemical stability.

Keywords

References

  1. J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang, J. Electrochem. Soc. 148 (2001) A1362-A1367. https://doi.org/10.1149/1.1417976
  2. B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Mater. Chem. Phys. 124 (2010) 504-509. https://doi.org/10.1016/j.matchemphys.2010.07.002
  3. M. Olivares-Marin, J.A. Fernandez, M.J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, F. Stoeckli, T.A. Centeno, Mater. Chem. Phys. 114 (2009) 323-327. https://doi.org/10.1016/j.matchemphys.2008.09.010
  4. M.R. Jisha, Y.J. Hwang, J.S. Shin, K.S. Nahm, T. Prem Kumar, K. Karthikeyan, N. Dhanikaivelu, D. Kalpana, N.G. Renganathan, A. Manuel Stephan, Mater. Chem. Phys. 115 (2009) 33-39. https://doi.org/10.1016/j.matchemphys.2008.11.010
  5. F. Pico, C. Pecharroman, A. Anson, M.T. Martinez, J.M. Rojo, J. Electrochem. Soc. 154 (2007) A579-A586. https://doi.org/10.1149/1.2728037
  6. B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, Y. Yang, Electrochim. Acta 52 (2007) 4595-4598. https://doi.org/10.1016/j.electacta.2007.01.006
  7. C.-C. Hu, C.-C. Wang, J. Power Sources 125 (2004) 299-308. https://doi.org/10.1016/j.jpowsour.2003.08.002
  8. C. Du, N. Pan, J. Power Sources 160 (2006) 1487-1494. https://doi.org/10.1016/j.jpowsour.2006.02.092
  9. K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Adv. Mater. 13 (2001) 497-500.
  10. S. Wen, M. Jung, O.-S. Joo, S.-I. Mho, Curr. Appl. Phys. 6 (2006) 1012-1015. https://doi.org/10.1016/j.cap.2005.07.008
  11. Y.J. Lee, J.C. Jung, J. Yi, S.-H. Baeck, J.R. Yoon, I.K. Song, Curr. Appl. Phys. 10 (2010) 682-686. https://doi.org/10.1016/j.cap.2009.08.017
  12. L.A. Pocrifka, R.G. Freitas, A.V. Rosario, E.C. Pereira, J. Solid State Electrochem. 15 (2011) 1109-1113. https://doi.org/10.1007/s10008-010-1167-9
  13. V.D. Patake, S.M. Pawar, V.R. Shinde, T.P. Gujar, C.D. Lokhande, Curr. Appl. Phys. 10 (2010) 99-103. https://doi.org/10.1016/j.cap.2009.05.003
  14. X. Liu, P.G. Pickup, J. Power Sources 176 (2008) 410-416. https://doi.org/10.1016/j.jpowsour.2007.10.076
  15. J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison, Langmuir 15 (1999) 780-785. https://doi.org/10.1021/la980785a
  16. K. Yokoshima, T. Shibutani, M. Hirota, W. Sugimoto, Y. Murakami, Y. Takasu, J. Power Sources 160 (2006) 1480-1486. https://doi.org/10.1016/j.jpowsour.2006.02.053
  17. C.-Z. Yuan, H. Dou, B. Gao, L.-H. Su, X.-G. Zhang, J. Solid State Electrochem. 12 (2008) 1645-1652. https://doi.org/10.1007/s10008-008-0543-1
  18. Y. Li, K. Huang, D. Zeng, S. Liu, Z. Yao, J. Solid State Electrochem. 14 (2010) 1205-1211. https://doi.org/10.1007/s10008-009-0955-6
  19. H.-R. Chen, H.-H. Lai, J.-J. Jow, Mater. Chem. Phys. 125 (2011) 652-655. https://doi.org/10.1016/j.matchemphys.2010.10.003
  20. M.T. Brumbach, T.M. Alam, R.H. Nilson, P.G. Kotula, B.B. McKenzie, R.G. Tissot, B.C. Bunker, Mater. Chem. Phys. 124 (2010) 359-370. https://doi.org/10.1016/j.matchemphys.2010.06.047
  21. N.-L. Wu, S.-L. Kuo, M.-H. Lee, J. Power Sources 104 (2002) 62-65. https://doi.org/10.1016/S0378-7753(01)00873-4
  22. L. Xue, H. Hao, Z. Wei, T. Huang, A. Yu, J. Solid State Electrochem. 15 (2011) 485-491. https://doi.org/10.1007/s10008-010-1108-7
  23. M.-T. Lee, J.-K. Chang, Y.-T. Hsieh, W.-T. Tsai, C.-K. Lin, J. Solid State Electrochem. 14 (2010) 1697-1703. https://doi.org/10.1007/s10008-010-1009-9
  24. H.-S. Nam, J.-K. Yoon, J.M. Ko, J.-D. Kim, Mater. Chem. Phys. 123 (2010) 331-336. https://doi.org/10.1016/j.matchemphys.2010.04.030
  25. C.-H. Liang, C.-S. Hwang, J. Alloy Compd. 500 (2010) 102-107. https://doi.org/10.1016/j.jallcom.2010.04.001
  26. P. Staiti, F. Lufrano, J. Power Sources 187 (2009) 284-289. https://doi.org/10.1016/j.jpowsour.2008.10.080
  27. J. Ni, W. Lu, L. Zhang, B. Yue, X. Shang, Y. Lv, J. Phys. Chem. C 113 (2009) 54-60. https://doi.org/10.1021/jp806454r
  28. K.-W. Nam, K.-B. Kim, J. Electrochem. Soc. 149 (2002) A346-A354. https://doi.org/10.1149/1.1449951
  29. J. Cheng, G.-P. Cao, Y.-S. Yang, J. Power Sources 159 (2006) 734-741. https://doi.org/10.1016/j.jpowsour.2005.07.095
  30. T. Nathan, A. Aziz, A.F. Noor, S.R.S. Prabaharan, J. Solid State Electrochem. 12 (2008) 1003-1009. https://doi.org/10.1007/s10008-007-0465-3
  31. L. Wang, Y. Zhao, Q. Lai, Y. Hao, J. Alloy Compd. 495 (2010) 82-87. https://doi.org/10.1016/j.jallcom.2010.01.091
  32. Y.Y. Xi, D. Li, A.B. Djurisic, M.H. Xie, K.Y.K. Man, W.K. Chan, Electrochem. Solid State Lett. 11 (2008) D56-D59. https://doi.org/10.1149/1.2903345
  33. Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, J. Power Sources 195 (2010) 1757-1760. https://doi.org/10.1016/j.jpowsour.2009.09.048
  34. M.-B. Zheng, J. Cao, S.-T. Liao, J.-S. Liu, H.-Q. Chen, Y. Zhao, W.-J. Dai, G.-B. Ji, J.- M. Cao, J. Tao, J. Phys. Chem. C 113 (2009) 3887-3894. https://doi.org/10.1021/jp810230d
  35. L. Cui, J. Li, X.-G. Zhang, J. Appl. Electrochem. 39 (2009) 1871-1876. https://doi.org/10.1007/s10800-009-9891-5
  36. S. Xiong, C. Yuan, X. Zhang, B. Xi, Y. Qian, Chem. Eur. J. 15 (2009) 5320-5326. https://doi.org/10.1002/chem.200802671
  37. L. Wang, X. Liu, X. Wang, X. Yang, L. Lu, Curr. Appl. Phys. 10 (2010) 1422-1426. https://doi.org/10.1016/j.cap.2010.05.007
  38. N.J. Tharayil, S. Sagar, R. Raveendran, A.V. Vaidyan, Physica B 399 (2007) 1-8. https://doi.org/10.1016/j.physb.2007.03.037
  39. Z. Fan, J. Chen, K. Cui, F. Sun, Y. Xu, Y. Kuang, Electrochim. Acta 52 (2007) 2959-2965. https://doi.org/10.1016/j.electacta.2006.09.029
  40. Z. Zheng, L. Huang, Y. Zhou, X. Hu, X. Ni, Solid State Sci. 11 (2009) 1439-1443. https://doi.org/10.1016/j.solidstatesciences.2009.04.027
  41. S.R. Sivakkumar, J.M. Ko, D.Y. Kim, B.C. Kim, G.G. Wallace, Electrochim. Acta 52 (2007) 7377-7385. https://doi.org/10.1016/j.electacta.2007.06.023
  42. Y.J. Lee, S. Park, J.G. Seo, J.R. Yoon, J. Yi, I.K. Song, Curr. Appl. Phys. 11 (2011) 631-635. https://doi.org/10.1016/j.cap.2010.10.016
  43. Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Curr. Appl. Phys. 11 (2011) 1-5. https://doi.org/10.1016/j.cap.2010.06.001
  44. M.-K. Seo, S.-J. Park, Curr. Appl. Phys. 10 (2010) 391-394. https://doi.org/10.1016/j.cap.2009.06.032
  45. J.M. Ko, K.M. Kim, Mater. Chem. Phys. 114 (2009) 837-841. https://doi.org/10.1016/j.matchemphys.2008.10.047
  46. S.H. Kim, Y.I. Kim, J.H. Park, J.M. Ko, Int. J. Electrochem. Sci. 4 (2009) 1489-1496.
  47. Y.I. Yoon, J.M. Ko, Int. J. Electrochem. Sci. 3 (2008) 1340-1347.
  48. H. Li, Y. Li, R. Wang, R. Cao, J. Alloy Compd. 481 (2009) 100-105. https://doi.org/10.1016/j.jallcom.2009.03.058
  49. Y.J. Lee, J.C. Jung, S. Park, J.G. Seo, S.-H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Curr. Appl. Phys. 10 (2010) 947-951. https://doi.org/10.1016/j.cap.2009.11.078
  50. J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, Electrochem. Solid State Lett. 5 (2002) H7-H10. https://doi.org/10.1149/1.1432245
  51. M. Selvakumar, D. Krishna Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Physica B 405 (2010) 2286-2289. https://doi.org/10.1016/j.physb.2010.02.028
  52. C. Lin, J.A. Ritter, B.N. Popov, J. Electrochem. Soc. 146 (1999) 3155-3160. https://doi.org/10.1149/1.1392448
  53. J.H. Jang, S. Han, T. Hyeon, S.M. Oh, J. Power Sources 123 (2003) 79-85. https://doi.org/10.1016/S0378-7753(03)00459-2
  54. H. Li, R. Wang, R. Cao, Micropor. Mesopor. Mater. 111 (2008) 32-38. https://doi.org/10.1016/j.micromeso.2007.07.002
  55. X.J. He, Y.J. Geng, S. Oke, K. Higashi, M. Yamamoto, H. Takikawa, Synth. Met. 159 (2009) 7-12. https://doi.org/10.1016/j.synthmet.2008.07.008
  56. B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, 1999.
  57. Y. NuLi, P. Zhang, Z. Guo, H. Liu, J. Yang, Electrochem. Solid State Lett. 11 (2008) A64-A67. https://doi.org/10.1149/1.2861226
  58. M. Ramani, B.S. Haran, R.E. White, B.N. Popov, L. Arsov, J. Power Sources 93 (2001) 209-214. https://doi.org/10.1016/S0378-7753(00)00575-9
  59. Y. Huai, X. Hu, Z. Lin, Z. Deng, J. Suo, Mater. Chem. Phys. 113 (2009) 962-966. https://doi.org/10.1016/j.matchemphys.2008.08.074

Cited by

  1. Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors vol.52, pp.10, 2012, https://doi.org/10.7567/jjap.52.10mb16
  2. Easy procedure to prepare nitrogen-containing activated carbons for supercapacitors vol.4, pp.73, 2014, https://doi.org/10.1039/c4ra05881j
  3. Controllable synthesis of 3D binary nickel–cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors vol.3, pp.23, 2012, https://doi.org/10.1039/c5ta01804h
  4. Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications vol.6, pp.1, 2012, https://doi.org/10.5229/jecst.2015.6.1.16
  5. Synthesis of NiO/Ag nancomposites by micro-emulsion method and the capacitance performance as electrodes vol.27, pp.5, 2016, https://doi.org/10.1007/s10854-016-4355-2
  6. Graphene and activated carbon-wrapped and Co3O4-intercalated 3D sandwich nanostructure hybrid for high-performance supercapacitance vol.42, pp.13, 2012, https://doi.org/10.1039/c8nj01160e
  7. Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications vol.11, pp.8, 2012, https://doi.org/10.1007/s12274-018-2008-x
  8. Effect of Calcination Conditions on the Supercapacitive Performance of Activated Carbon/Nickel Oxide Nanocomposite Electrodes Prepared by Electroless Nickel Plating vol.48, pp.6, 2012, https://doi.org/10.1007/s11664-019-07132-7
  9. Facile Preparation of Ni-Co Bimetallic Oxide/Activated Carbon Composites Using the Plasma in Liquid Process for Supercapacitor Electrode Applications vol.10, pp.1, 2012, https://doi.org/10.3390/nano10010061
  10. Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes vol.24, pp.7, 2020, https://doi.org/10.1007/s10008-020-04673-4