DOI QR코드

DOI QR Code

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Min, Jin-Woo (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Quan, Lin-Hu (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Sung-Young (Department of Computer Engineering, Kyung Hee University) ;
  • Yang, Dong-Uk (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
  • Received : 2011.11.21
  • Accepted : 2012.01.17
  • Published : 2012.07.15

Abstract

Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

Keywords

References

  1. Duo D, Jin L, Chen Y. Advances and prospects of the study on chemical constituents and pharmacological activities of Panax ginseng. J Shenyang Pharm Univ 1999;16:151-156.
  2. Yuan CS, Wang CZ, Wicks SM, Qi LW. Chemical and Pharmacological Studies of Saponins with a Focus on American Ginseng. J Ginseng Res 2010;34:160-167 https://doi.org/10.5142/jgr.2010.34.3.160
  3. Park JH. Kim JM, Han SB, Kim NY, Surh YJ, Lee SK, Kim ND, Park MK. A new processed ginseng with fortified activity. In: Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng; 1998. Seoul: Korean Society of Ginseng, 1998. p.146-159.
  4. Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 2005;43:456-462.
  5. Kwon SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921:335-339. https://doi.org/10.1016/S0021-9673(01)00869-X
  6. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rh1 possesses antiallergic and anti-infl ammatory activities. Int Arch Allergy Immunol 2004;133:113-120. https://doi.org/10.1159/000076383
  7. Han BH, Park MH, Han YN, Woo LK, Sankawa U, Yahara S, Tanaka O. Degradation of ginseng saponins under mild acidic conditions. Planta Med 1982;44:146-149. https://doi.org/10.1055/s-2007-971425
  8. Kim MH, Hong HD, Kim YC, Rhee YK, Kim KT, Rho J. Ginsenoside Changes in Red Ginseng Manufactured by Acid Impregnation Treatment. J Ginseng Res 2010;34:93-97. https://doi.org/10.5142/jgr.2010.34.2.093
  9. Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 1996;62:453-457. https://doi.org/10.1055/s-2006-957938
  10. Cheng LQ, Na JR, Kim MK, Bang MH, Yang DC. Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside XVII by Intrasporangium sp. GS603 isolated from soil. J Microbiol Biotechnol 2007;17:1937-1943.
  11. Choi JR, Hong SW, Kim Y, Jang SE, Kim NJ, Han MJ, Kim DH. Metabolic Activities of Ginseng and Its Constituents, Ginsenoside Rb1 and Rg1, by Human Intestinal Microflora. J Ginseng Res 2011;35:301-307. https://doi.org/10.5142/jgr.2011.35.3.301
  12. Atrih A, Rekhif N, Milliere JB, Lefebvre G. Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19. Can J Microbiol 1993;39:1173-1179. https://doi.org/10.1139/m93-178
  13. Klaver FA, van der Meer R. The assumed assimilation of cholesterol by Lactobacilli and Bifi dobacterium bifi dum is due to their bile salt-deconjugating activity. Appl Environ Microbiol 1993;59:1120-1124.
  14. Rhee CH, Park HD. Isolation and characterization of lactic acid bacteria producing antimutagenic substance Korean Kimchi. Korean J Appl Microbiol Biotechnol 1999;27:15-22.
  15. Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 2006;28:1121-1127. https://doi.org/10.1007/s10529-006-9059-x
  16. Dong A, Ye M, Guo H, Zheng J, Guo D. Microbial transformation of ginsenoside Rb1 by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 2003;25:339-344. https://doi.org/10.1023/A:1022320824000
  17. Dou D, Wen Y, Pei Y, Chen Y, Ma Z. Active constituents reducing side-effects of prednisone acetate in leaves of Panax ginseng C.A Meyer. Zhongguo Zhong Yao Za Zhi 1997;22:174-176, 192.
  18. Sung JH, Hasegawa H, Matsumiya S, Uchiyama M. Metabolism of ginseng saponins by human intestinal bacteria. Korean J Pharmacognosy 1995;26:360-367.
  19. Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-771. https://doi.org/10.1007/s10529-005-5632-y
  20. Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol Pharm Bull 2005;28:2102-2105. https://doi.org/10.1248/bpb.28.2102
  21. Yang S, Jiang Z, Yan Q, Zhu H. Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. J Agric Food Chem 2008;56:602-608. https://doi.org/10.1021/jf072279+
  22. Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P. Purification, characterization, and substrate specifi city of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 1998;64:3607-3614.
  23. Su JH, Xu JH, Lu WY, Lin GQ. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarim proliferatum ECU2042. J Mol Catal B Enzym 2006;38:113-118. https://doi.org/10.1016/j.molcatb.2005.12.004
  24. Saha BC, Bothast RJ. Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol 1996;62:3165-3170.
  25. Kim SD, Seu JH. Enzymatic properties of the convertible enzyme of ginseng saponin produced from Rhizopus japonicas. Korean J Appl Microbiol Bioeng 1989;17:126-130.
  26. Kuo LC, Lee KT. Cloning, expression, and characterization of two beta-glucosidases from isofl avone glycosidehydrolyzing Bacillus subtilis natto. J Agric Food Chem 2008;56:119-125. https://doi.org/10.1021/jf072287q
  27. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int 2005;25:1069-1073. https://doi.org/10.1111/j.1478-3231.2005.01068.x
  28. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Lee SM, Park YS, Lee JH et al. Effects of ginsenosides and their metabolites on voltage-dependent $Ca^{2+}$ channel subtypes. Mol Cells 2006;21:52-62.
  29. Liu Y, Zhang JW, Li W, Ma H, Sun J, Deng MC, Yang L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol Sci 2006;91:356-364. https://doi.org/10.1093/toxsci/kfj164
  30. Park EJ, Zhao YZ, Kim J, Sohn DH. A ginsenoside metabolite, 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol, triggers apoptosis in activated rat hepatic stellate cells via caspase-3 activation. Planta Med 2006;72:1250-1253. https://doi.org/10.1055/s-2006-947223
  31. Zhou W, Feng MQ, Li JY, Zhou P. Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K. J Asian Nat Prod Res 2006;8:519-527. https://doi.org/10.1080/10286020500208600

Cited by

  1. Microbial ketonization of ginsenosides F1 and C–K by Lactobacillus brevis vol.106, pp.6, 2014, https://doi.org/10.1007/s10482-014-0291-4
  2. Optimization of Encapsulation Conditions for Fermented Red Ginseng Extracts by Using Cyclodextrin vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1708
  3. Disposition of Astragaloside IV via Enterohepatic Circulation Is Affected by the Activity of the Intestinal Microbiome vol.63, pp.26, 2015, https://doi.org/10.1021/acs.jafc.5b00168
  4. Paenibacillus puernese sp. nov., a β-glucosidase-producing bacterium isolated from Pu’er tea vol.198, pp.3, 2016, https://doi.org/10.1007/s00203-015-1180-6
  5. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2016, https://doi.org/10.3109/07388551.2015.1083942
  6. A literature update elucidating production of Panax ginsenosides with a special focus on strategies enriching the anti-neoplastic minor ginsenosides in ginseng preparations vol.101, pp.10, 2017, https://doi.org/10.1007/s00253-017-8279-4
  7. Study on Transformation of Ginsenosides in Different Methods vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/8601027
  8. Effects of ascorbic acid on α-l-arabinofuranosidase and α-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside vol.58, pp.6, 2015, https://doi.org/10.1007/s13765-015-0113-z
  9. An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191018
  10. Fermentative Transformation of Ginsenoside Rb1 from Panax ginseng C. A. Meyer to Rg3 and Rh2 by Lactobacillus paracasei subsp. tolerans MJM60396 vol.21, pp.5, 2012, https://doi.org/10.1007/s12257-016-0281-7
  11. Lactobacillus pentosus 발효에 의한 담쟁이덩굴 줄기 추출물의 항산화 및 세포보호 효과 vol.43, pp.3, 2012, https://doi.org/10.15230/scsk.2017.43.3.255
  12. Antioxidative and Antiaging Activities and Component Analysis of Lespedeza cuneata G. Don Extracts Fermented with Lactobacillus pentosus vol.27, pp.11, 2012, https://doi.org/10.4014/jmb.1706.06028
  13. Lactobacillus pentosus에 의한 발효 전후 마가목 가지 추출물의 항산화 활성 및 Matrix Metalloproteinases 발현 억제 효과 vol.28, pp.6, 2012, https://doi.org/10.14478/ace.2017.1093
  14. Recent Advances in Biotransformation of Saponins vol.24, pp.13, 2012, https://doi.org/10.3390/molecules24132365
  15. Cumulative Production of Bioactive Rg3, Rg5, Rk1, and CK from Fermented Black Ginseng Using Novel Aspergillus niger KHNT-1 Strain Isolated from Korean Traditional Food vol.9, pp.2, 2012, https://doi.org/10.3390/pr9020227
  16. Bioengineering of Anti‐Inflammatory Natural Products vol.16, pp.5, 2012, https://doi.org/10.1002/cmdc.202000771
  17. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase vol.153, pp.None, 2022, https://doi.org/10.1016/j.enzmictec.2021.109941