DOI QR코드

DOI QR Code

Chemical Properties and DPPH Radical Scavenging Ability of Sword Bean (Canavalia gladiata) Extract

작두콩 추출물의 화학적 특성 및 DPPH 라디컬 소거능

  • Kim, Jong-Pil (Health and Environment Research Institute of Gwangju) ;
  • Yang, Yong-Shik (Health and Environment Research Institute of Gwangju) ;
  • Kim, Jin-Hee (Health and Environment Research Institute of Gwangju) ;
  • Lee, Hyang-Hee (Health and Environment Research Institute of Gwangju) ;
  • Kim, Eun-Sun (Health and Environment Research Institute of Gwangju) ;
  • Moon, Yong-Woon (Health and Environment Research Institute of Gwangju) ;
  • Kim, Jin-Young (Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University) ;
  • Chung, Jae-Keun (Health and Environment Research Institute of Gwangju)
  • 김종필 (광주광역시보건환경연구원) ;
  • 양용식 (광주광역시보건환경연구원) ;
  • 김진희 (광주광역시보건환경연구원) ;
  • 이향희 (광주광역시보건환경연구원) ;
  • 김은선 (광주광역시보건환경연구원) ;
  • 문용운 (광주광역시보건환경연구원) ;
  • 김진영 (전남대학교 식품공학과 및 기능성식품연구센터) ;
  • 정재근 (광주광역시보건환경연구원)
  • Received : 2012.04.07
  • Accepted : 2012.05.02
  • Published : 2012.08.31

Abstract

We investigated the chemical properties and antioxidant activities of sword bean (SWB) and compared it to soybean (SB) and black soybean (seoritae, BSB). The value of vitamin C, vitamin A, crude fat, and crude protein in SWB was 25.5, 0.37 mg/kg, 1.2, and 25.6%, respectively. The crude fat content (1.2%) in SWB was very low in comparison with those of SB (16.5%) and BSB (16.1%). In 16 free amino acids investigated, the histidine content (9.2%) was high in SWB, followed by SB (3.0%) and BSB (2.9%). Total flavonoid content of SWB (493.2 mg/100 g) was significantly higher than those of SB (71.8 mg/100 g) and BSB (97.5 mg/100 g). Total polyphenol content of SWB (1,152.0 mg/100 g) was not significantly different from that of SB (1,165.7 mg/100 g) but lower than that of BSB (1,298.6 mg/100 g). DPPH radical scavenging activity ($SC_{50}$, 50% scavenging concentration) of SWB was 13.1 ${\mu}g/mL$, whereas that of positive control (${\alpha}$-tocopherol) was 8.3 ${\mu}g/mL$.

본 연구에서 추출 용매의 선택은 작두콩과 대두, 서리태의 추출 수율과 실험의 용이성 등을 고려하여 메탄올을 사용하여 실험을 진행하였다. 작두콩의 화학적 특성을 알아보기 위해 일반성분 중 수분, 회분, 조단백질, 조지방 실험을 하였으며, 이 중 조지방에서 서리태, 대두와는 다른 작두콩만의 특징을 찾을 수 있었다. 작두콩의 조지방 함량은 1.2%로 서리태와 대두의 조지방 함량 16.1, 16.5%와 비교해 볼 때 매우 낮음을 알 수 있었다. 이 낮은 조지방 함량으로 인해 비극성 유기용매 헥산이나 에틸아세테이트 등에서 추출 수율이 서리태나 대두에 비해 낮게 나타났다. 구성아미노산은 함량과 구성비율을 실험하였다. 그 결과 Histidine의 구성비율이 서리태(2.9%)나 대두(3.0%)와 비교해 볼때 9.2%로 상대적으로 높은 구성비율을 나타냈다. 콩에서 대표적인 항산화활성 물질로 알려진 이소플라본은 작두콩에서 검출되지 않았다. 작두콩과 대두, 서리태의 비타민 실험결과는 모두 비타민 C의 함량이 비타민 A의 함량보다 높게 검출되었다. 무기질 함량 실험에서는 작두콩과 대두, 서리태에서 10가지 무기질 중 칼륨, 칼슘, 마그네슘의 함량이 높게 나타났다. 총 폴리페놀은 대두 1,165.7 mg/100 g, 서리태 1,298.6 mg/100 g, 작두콩 1,152.0 mg/100 g으로 서리태 보다는 적지만 대두와는 유의적 차이를 보이지 않았다. 총 플라보노이드는 대두 71.8 mg/100 g, 서리태 97.5 mg/100 g보다 작두콩에서 유의적으로 높게(493.2 mg/100 g) 나타났다. DPPH 라디칼 소거활성 결과를 토대로 $SC_{50}$ 값을 구한 결과 ${\alpha}$-tocopherol(8.3 ${\mu}g/mL$)과 대등한 13.1 ${\mu}g/mL$로 항산화활성이 높게 나타났으며, 농도 의존적으로 활성이 증가하고 있음을 알수 있었다. 이상의 결과 같은 콩과의 식물이지만 대두나 서리태와는 다른 화학적 특성을 가지고 있고 높은 항산화활성을 갖는 작두콩의 식품이나 건강기능식품으로서의 활용가치를 확인할 수 있었고, 항산화활성 물질의 분리 등 더 많은 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Hong Yunho. Food Physiological Active Substance Science. Chonnam National University Press. Gwangju, Korea pp. 13-72 (2009)
  2. Kalt W. Effects of production and processing factors on major fruit and vegetable antioxidant.J. Food Sci. 70: 11-19 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb09053.x
  3. Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 53: 75-100 (2009) https://doi.org/10.1007/s12013-009-9043-x
  4. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  5. Cai YZ, Sun M, Xing J, Luo Q, Corke H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78: 2872-2888 (2006) https://doi.org/10.1016/j.lfs.2005.11.004
  6. Pietta PG. Flavonoids as antioxidants. J. Agr. Food Chem. 63: 1035-1042 (2000)
  7. Joo SJ, Choi KJ, Kim KS, Lee JW, Park SJ. Characteristics of yougurt prepared with 'Jinpum' bean and sword bean (Canavalin gladiata). Korean J. Postharv. Sci. Technol. 8: 308-312 (2001)
  8. Cho YS, Bae YI, Shim KH. Chemical components in different parts of Korean sword bean (Canavalia gladiata). Korean J. Postharv. Sci. Technol. 6: 475-480 (1999)
  9. Kim SS, Kim KT, Hong HD. Development of Chunggukjang adding the sword beans. Korea Soybean Dig. 18: 33-50 (2001)
  10. KFDA. Korea Food Code. Korea Food & Drug Administration, Seoul, Korea. pp. 10-1-(1-33) (2009)
  11. KFDA. Korea Health Functional Food Code. Korea Food & Drug Administration, Seoul, Korea pp. III.3.6.8.1-(1-4) (2011)
  12. KFDA. Korea Food Code. Korea Food & Drug Administration, Seoul, Korea. pp. 10-1-(61-75) (2009)
  13. KFDA. Korea Food Code. Korea Food & Drug Administration, Seoul, Korea. pp. 10-7-(1-15) (2009)
  14. Folin O, Denis W. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-249 (1912)
  15. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71: 109-114 (2000) https://doi.org/10.1016/S0378-8741(99)00189-0
  16. Singh N, Rajini PS. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 85: 611-616 (2004) https://doi.org/10.1016/j.foodchem.2003.07.003
  17. Cho YS, Seo KI, Shim KH. Antimicrobial activities of Korean sword bean (Canavalia gladiata) extracts. Korean J. Postharv. Sci. Technol. 7: 113-116 (2000)
  18. Liu, K. Chemical and nutritional value of soybean components. pp.25-36. In: Soybeans: Chemistry, Technology, and Utilization, Liu K (ed). Chapman & Hall, New York, NY, USA (1997)
  19. Kim KS, Kim MJ, Lee KA, Kwon DY. Physico-Chemical properties of korean traditional soybeans. Korean J. Food Sci. Technol. 35: 335-341 (2003)
  20. Jeon BK, Yun ID, Lee JW, Lee CJ. Effects of histidine polymers on mucin release from primary cultured airway epithelial cells. Yakhak Hoeji 54: 334-340 (2010)
  21. Lee HT, Kim JH, Lee SS. Comparison of biological activity between soybean pastes adding sword bean and general soybean pastes. J. Fd. Hyg. Safety 24: 94-101 (2009)
  22. Kim JS, Yoon S. Isoflavone contents and $\beta$-glucosidase activities of soybeans, meju and doenjang. Korean J. Food Sci. Technol. 31: 1405-1409 (1999)
  23. Kao TH, Chen BH. Functional components in soybean cake and their effects on antioxidant activity. J. Agr. Food Chem. 54: 7544-7555 (2006) https://doi.org/10.1021/jf061586x
  24. Takahashi R, Ohmori R, Kiyose C, Momiyama Y, Ohsuzu F, Kondo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 53: 4578-4582 (2005) https://doi.org/10.1021/jf048062m
  25. Ancerewicz J, Migliavacca E, Carrupt PA, Testa B, Bree F, Zini R, Tillement JP, Labidalle S, Guyot D, Chauvet-Monges AM, Crevat A, Le Ridant A. Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants. Free Radical Bio. Med. 25: 113-120 (1998) https://doi.org/10.1016/S0891-5849(98)00072-0

Cited by

  1. Changes in the Nutritional Compositions of Soybean Sprouts Cultivated with Bamboo Ash vol.31, pp.3, 2016, https://doi.org/10.7318/KJFC/2016.31.3.213
  2. Isolation and Identification of Antioxidants from Methanol Extract of Sword Bean (Canavalia gladiata) vol.45, pp.6, 2013, https://doi.org/10.9721/KJFST.2013.45.6.777
  3. A comparison of antioxidative and anti-inflammatory activities of sword beans and soybeans fermented with Bacillus subtilis vol.6, pp.8, 2015, https://doi.org/10.1039/C5FO00290G
  4. Polyphenol Contents and Antioxidant Activities of Lentil Extracts from Different Cultivars vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.973
  5. Properties of Non-GM Soybeans with Lipoxygenase Free Genotypes vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1629
  6. Protective Effect of Canavalia gladiata on Gastric Inflammation Induced by Alcohol Treatment in Rats vol.42, pp.5, 2013, https://doi.org/10.3746/jkfn.2013.42.5.690