DOI QR코드

DOI QR Code

Densification of Copper Powders using High-pressure Torsion Process

고압비틀림 공정을 이용한 구리 분말의 치밀화

  • Lee, Dong-Jun (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH)) ;
  • Yoon, Eun-Yoo (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH)) ;
  • Kang, Soo-Young (Department of Metallurgical & Material Engineering, Inha Technical College) ;
  • Lee, Jung-Hwan (Korea Institute of Materials Science (KIMS)) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH))
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 윤은유 (포항공과대학교 신소재공학과) ;
  • 강수영 (인하공업전문대학 금속재료과) ;
  • 이정환 (재료연구소) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2012.07.01
  • Accepted : 2012.07.23
  • Published : 2012.10.28

Abstract

In this study, electrolytic copper powders were consolidated by high-pressure torsion process (HPT) which is the most effective process to produce bulk ultrafine grained and nanocrystalline metallic materials among various severe plastic deformation processes. The bulk samples were manufactured by the HPT process at 2.5 GPa and 1/2, 1 and 10 turns. After 10 turns, full densification was achieved by high pressure with shear deformation and ultrafine grained structure (average grain size of 677 nm) was observed by electron backscatter diffraction and a scanning transmission electron microscope.

Keywords

References

  1. R. Valiev: Nat. Mater., 3 (2004) 511. https://doi.org/10.1038/nmat1180
  2. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci., 45 (2000) 103. https://doi.org/10.1016/S0079-6425(99)00007-9
  3. R. Z. Valiev and T. G. Langdon: Prog. Mater. Sci., 51 (2006) 881. https://doi.org/10.1016/j.pmatsci.2006.02.003
  4. A. P. Zhilyaev and T. G. Langdon: Prog. Mater. Sci., 53 (2008) 893. https://doi.org/10.1016/j.pmatsci.2008.03.002
  5. C. T. Wang, N. Gao, M. G. Gee, R. J. K. Wood and T. G. Langdon: Wear, 280-281 (2012) 28. https://doi.org/10.1016/j.wear.2012.01.012
  6. R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch and B. Baudelet: Acta Mater., 44 (1996) 4705. https://doi.org/10.1016/S1359-6454(96)00156-5
  7. Y. Song, E. Y. Yoon, D. J. Lee, J. H. Lee and H. S. Kim: Mater. Sci. Eng. A, 528 (2011) 4840. https://doi.org/10.1016/j.msea.2011.02.020
  8. D. J. Lee, E. Y. Yoon, L. J. Park and H. S. Kim: Scripta Mater., 67 (2012) 384. https://doi.org/10.1016/j.scriptamat.2012.05.024
  9. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Bar, J. A. Szpunar and T. G. Langdon: Acta Mater., 51 (2003) 753. https://doi.org/10.1016/S1359-6454(02)00466-4
  10. A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon and T. R. McNelley: Mater. Sci. Eng. A, 410-411 (2005) 277. https://doi.org/10.1016/j.msea.2005.08.044
  11. Rvsz, E. Schafler and Z. Kovcs: Appl. Phys. Lett., 92 (2008) 011910. https://doi.org/10.1063/1.2830992
  12. Y. F. Sun, H. Fujii, N. Tsuji, Y. Todaka and M. Umemoto: J. Alloys Compd., 492 (2010) 149. https://doi.org/10.1016/j.jallcom.2009.11.135
  13. A. Rvsz, . Kis-Tth, L. K. Varga, E. Schafler, I. Bakonyi and T. Spassov: Int. J. Hydrogen Energy, 37 (2012) 5769. https://doi.org/10.1016/j.ijhydene.2011.12.160
  14. E. Y. Yoon, H. J. Chae, T.-S. Kim, C. S. Lee and H. S. Kim: J. Kor. Powd. Met. Inst., 17 (2010) 190 (Korean). https://doi.org/10.4150/KPMI.2010.17.3.190
  15. S.-H. Joo, S. C. Yoon, C. S. Lee and H. S. Kim: J. Kor. Powd. Met. Inst., 17 (2010) 52 (Korean). https://doi.org/10.4150/KPMI.2010.17.1.052
  16. E. Y. Yoon, D. J. Lee, D. H. Ahn, E. S. Lee and H. S. Kim: J. Mater. Sci., (2012) In Press.
  17. E. Y. Yoon, D. J. Lee, H. N. Kim, H.-S. Kang, E. S. Lee and H. S. Kim: J. Kor. Powd. Met. Inst., 18 (2011) 411 (Korean). https://doi.org/10.4150/KPMI.2011.18.5.411
  18. E. Y. Yoon, D. J. Lee, T.-S. Kim and H. S. Kim: J. Kor. Powd. Met. Inst., 19 (2012) 204 (Korean). https://doi.org/10.4150/KPMI.2012.19.3.204
  19. I. V. Alexandrov, K. Zhang, A. R. Kilmametov, K. Lu and R. Z. Valiev: Mater. Sci. Eng. A, 234-236 (1997) 331. https://doi.org/10.1016/S0921-5093(97)00135-4

Cited by

  1. Microstructure Evolution and Mechanical Properties of Al-1080 Processed by a Combination of Equal Channel Angular Pressing and High Pressure Torsion vol.44, pp.6, 2013, https://doi.org/10.1007/s11661-013-1629-7