DOI QR코드

DOI QR Code

Enhanced Boron Gettering Effect of n-Type Solar Grade Si Wafers by In Situ Oxidation

  • Cho, Young Joon (Chungnam National University, Graduate School of Green Energy Technology) ;
  • Chang, Hyo Sik (Chungnam National University, Graduate School of Green Energy Technology)
  • Published : 2013.11.20

Abstract

To investigate the gettering effect of n-type (phosphorous-doped) crystalline Czochralski-silicon (Cz-Si) wafers, we made boron emitters by diffusing boron into them and, subsequently, oxidized the boron-diffused n-type crystalline silicon wafers by in situ wet and dry oxidation. After oxidation, we measured the minority carrier lifetime by using microwave photoconductivity decay (${\mu}$-PCD), open-circuit voltage by quasi-steady-static photoconductance and the sheet resistance by a 4 point probe, respectively. We suggested the boron diffusion and in situ oxidation conditions to achieve longer lifetimes. We can obtain the equivalent lifetime to conventional oxidation through the quartz tube designed for boron doping and in-situ oxidation. The uniformity of sheet resistance under 3% was achieved at relatively low temperature and the lifetime of $21.6{\mu}s$ was also obtained by boron gettering effect and passivation of oxide layer.

Keywords

References

  1. N. Guillevin, R. C. G. Naber, L. J. Geerligs, and A. W. Weeber, 19th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, p.26 Vail. Co., USA (2009).
  2. D. Macdonald and L. J. Geerligs, Appl. Phys. Lett. 85, 4061 (2004). https://doi.org/10.1063/1.1812833
  3. S. E. Park, Y. D. Kim, S. H. Bae, S. T. Kim, J. Y. Song, H. H. Kim, H. M. Park, S. M. Kim, S. J. Tark, and D. H. Kim, Met. Mater. Int. 18, 731 (2012). https://doi.org/10.1007/s12540-012-4022-y
  4. J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, and K. C. Fisher, IEEE Trans. on Elec. Devi. 53, 1893 (2006). https://doi.org/10.1109/TED.2006.878026
  5. J. Jourdan, Y. Veschetti, S. Dubois, T. Desrues, and R. Monna, Prog. Photovolt. Res. Appl. 16, 379 (2008). https://doi.org/10.1002/pip.818
  6. Y. D. Kim, S. H. Kim, and T. S. Jo, Korean J. Met. Mater. 49, 187 (2011).
  7. J. Libal, R. Petres, T. Buck, R. Kopecek, G. Hahn, R. Ferre, M. Vetter, I. Martin, K. Wambach, I. Roever, and P. Fath. Proc. 20th European Photovoltaic Solar Energy Conf. p.793, Barcelona, Spain (2005).
  8. J. Schmidt, A. G. Aberle, and R. Hezel, 26th IEEE Photovoltaic Spec. Conf. p.13, Anaheim, USA (1997).
  9. H. S. Chang and H.-C. Jung, J. Nanosci. Nanotechnol. 11, 3680 (2011). https://doi.org/10.1166/jnn.2011.4161
  10. J. Libal, R. Petres, R. Kopecek, G. Hahn, K. Wambach, and P. Fath, Proc. 31st IEEE Photovoltaic Spec. Conf., p.1209, Lake Buena Vista, USA (2005).
  11. S. A. Mchugo, H. Hieslmair, and E. R. Weber, Appl. Phys. A: Mater. Sci. Process. 64, 127 (1997). https://doi.org/10.1007/s003390050453
  12. H. M. Park, S. J. Tark, C. S. Kim, S. E. Park, Y. D. Kim, C. S. Son, J. C. Lee, and D. H. Kim, Int. J. Photoenergy 2012, 794876 (2012).
  13. O. Schultz, S. W. Glunz, and G. P. Willeke, Prog. Photovolt: Res. Appl. 12, 553 (2004). https://doi.org/10.1002/pip.583
  14. N. Ohe, K. Tsutsui, T. Warabisako, and T. Saitoh, Sol. Energy Mater. Sol. Cells 48, 145 (1997). https://doi.org/10.1016/S0927-0248(97)00086-X

Cited by

  1. 결정질 실리콘 태양전지의 적용을 위해 보론 확산 공정에서 생성되는 Boron Rich Layer 제거 연구 vol.28, pp.10, 2013, https://doi.org/10.4313/jkem.2015.28.10.665
  2. Performance of p+layer formed by B diffusion using boron paper vol.5, pp.3, 2013, https://doi.org/10.1088/2053-1591/aab070