DOI QR코드

DOI QR Code

Wafer Level Bonding Technology for 3D Stacked IC

3D 적층 IC를 위한 웨이퍼 레벨 본딩 기술

  • 조영학 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성동 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2013.02.21
  • Accepted : 2013.03.25
  • Published : 2013.03.30

Abstract

3D stacked IC is one of the promising candidates which can keep Moore's law valid for next decades. IC can be stacked through various bonding technologies and they were reviewed in this report, for example, wafer direct bonding and atomic diffusion bonding, etc. As an effort to reduce the high temperature and pressure which were required for high bonding strength in conventional Cu-Cu thermo-compression bonding, surface activated bonding, solid liquid inter-diffusion and direct bonding interface technologies are actively being developed.

3D 적층 IC 개발을 위한 본딩 기술의 현황에 대해 알아보았다. 실리콘 웨이퍼를 본딩하여 적층한 후 배선 공정을 진행하는 wafer direct bonding 기술보다는 배선 및 금속 범프를 먼저 형성한 후 금속 본딩을 통해 웨이퍼를 적층하는 공정이 주로 연구되고 있다. 일반적인 Cu 열압착 본딩 방식은 높은 온도와 압력을 필요로 하기 때문에 공정온도와 압력을 낮추기 위한 연구가 많이 진행되고 있으며, 그 가운데서 Ar 빔을 조사하여 표면을 활성화 시키는 SAB 방식과 실리콘 산화층과 Cu를 동시에 본딩하는 DBI 방식이 큰 주목을 받고 있다. 국내에서는 Cu 열압착 방식을 이용한 웨이퍼 레벨 적층 기술이 현재 개발 중에 있다.

Keywords

References

  1. Hongsik Park, Ali Afzali, Shu-Jen Han, George S. Tulevski, Aaron D. Franklin, Jerry Tersoff, James B. Hannon & Wilfried Haensch, "High-density integration of carbon nanotubes via chemical self-assembly" Nature Nanotechnology 7, 787-791 (2012). https://doi.org/10.1038/nnano.2012.189
  2. http://newsroom.intel.com/docs/DOC-2032
  3. Kim, Kinam. "Future silicon technology." Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2012).
  4. Kye, Jongwook, and Rasit O. Topaloglu. "A Brief Overview of Lithographic Advancements in the Last Decade with a Focus on Double Patterning." Recent Topics on Modeling of Semiconductor Processes, Devices, and Circuits, p3, Bentham Science Publishers (2011).
  5. E. Kim and J. Sung, "Yield challenges in wafer stacking technology", Microelectron. Reliab., 48, 1102-1105 (2008). https://doi.org/10.1016/j.microrel.2008.03.010
  6. Reda, S., Smith, G., and Smith, L. "Maximizing the functional yield of wafer-to-wafer 3-D integration", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(9), 1357-1362 (2009). https://doi.org/10.1109/TVLSI.2008.2003513
  7. Stengl, R., T. Tan, and U. Gosele. "A model for the silicon wafer bonding process." Japanese Journal of Applied Physics, 28(1), 1735-1741 (1989). https://doi.org/10.1143/JJAP.28.1735
  8. R. Jansen, O. M. J. van't Erve, S. D. Kim, R. Vlutters, P. S. Anil Kumar and J. C. Lodder, "The spin-valve transistor: fabrication, characterization and physics", J. Appl. Phys., 89(11), 7431-7436 (2001). https://doi.org/10.1063/1.1357857
  9. T. Shimatsu, and M. Uomoto, "Atomic diffusion bonding of wafers with thin nanocrystalline metal films", J. Vac. Sci. Technol. B, 28, 706-714, (2010).
  10. Suga T., "Low temperature bonding for 3D integration-A review of the surface activated bonding (SAB)", 3rd IEEE International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D), 7-10 (2012).
  11. Ko, Cheng-Ta, and Kuan-Neng Chen. "Low temperature bonding technology for 3D integration", Microelectronics Reliability, 52, 302-311 (2012). https://doi.org/10.1016/j.microrel.2011.03.038
  12. Kim, T. H., Howlader, M. M. R., Itoh, T., and Suga, T., "Room temperature Cu-Cu direct bonding using surface activated bonding method", Journal of Vacuum Science & Technology A, 21(2), 449-453 (2003).
  13. Shigetou, A., T. Itoh, and T. Suga. "Direct bonding of CMPCu films by surface activated bonding (SAB) method." Journal of Materials Science 40(12) 3149-3154 (2005). https://doi.org/10.1007/s10853-005-2677-1
  14. Chen, K. N., Tan, C. S., Fan, A., and Reif, R. "Morphology and bond strength of copper wafer bonding" Electrochemical and Solid-State Letters, 7(1), G14-G16. (2004). https://doi.org/10.1149/1.1626994
  15. Jang, E. J., Hyun, S., Lee, H. J., and Park, Y. B., "Effect of wet pretreatment on interfacial adhesion energy of Cu-Cu thermocompression bond for 3D IC packages." Journal of Electronic Materials 38(12) 2449-2454 (2009). https://doi.org/10.1007/s11664-009-0942-9
  16. Gaudin, G., Riou, G., Landru, D., Tempesta, C., Radu, I., Sadaka, M., and Hannon, R. "Low temperature direct wafer to wafer bonding for 3D integration: Direct bonding, surface preparation, wafer-to-wafer alignment." 2010 IEEE International 3D Systems Integration Conference (3DIC), 1-4 (2010).
  17. Tang, Y. S., Chang, Y. J., and Chen, K. N. "Wafer-level Cu-Cu bonding technology". Microelectronics Reliability, 52(2), 312-320 (2012). https://doi.org/10.1016/j.microrel.2011.04.016
  18. Radu, I., Landru, D., Gaudin, G., Riou, G., Tempesta, C., Letertre, F., and Sadaka, M., "Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking", 2010 IEEE International 3D Systems Integration Conference (3DIC), 1-6 (2010).
  19. Gueguen, P., di Cioccio, L., Rivoire, M., Scevola, D., Zussy, M., Charvet, A. M., and Clavelier, L., "Copper direct bonding for 3D integration", International Interconnect Technology Conference 2008, 61-63 (2008).
  20. Gueguen, P., Di Cioccio, L., Gergaud, P., Rivoire, M., Scevola, D., Zussy, M., Charveta A, Ballya L, Lafonda D and Clavelier, L. "Copper Direct-Bonding Characterization and Its Interests for 3D Integration" Journal of The Electrochemical Society, 156(10), H772-H776. (2009). https://doi.org/10.1149/1.3187271
  21. Frank Fournel, presentation at Atelier Thematique du GDR MECANO (2011)
  22. Lee, B., Jeon, H., Jeon, S. J., Kwon, K. W., and Lee, H. J., "A Study on the Breakdown Mechanism of an Electroless-Plated Ni (P) Diffusion Barrier for Cu/Sn/Cu 3D Interconnect Bonding Structures", Journal of Electronic Materials, 1-6 (2011).
  23. Ko, C. T., Hsiao, Z. C., Fu, H. C., Chen, K. N., Lo, W. C., and Chen, Y. H., "Wafer-to-wafer hybrid bonding technology for 3D IC", 3rd Electronic System-Integration Technology Conference (ESTC), 1-5 (2010).
  24. Reed, J. D., Lueck, M., Gregory, C., Huffman, A., Lannon Jr, J. M., and Temple, D. S., "Low temperature bonding of high density large area array interconnects for 3D integration." 43rd IMAPS Conference, Raleigh, NC November. Vol. 2. (2010).
  25. Jourdain, A., Stoukatch, S., De Moor, P., and Ruythooren, W. "Simultaneous Cu-Cu and compliant dielectric bonding for 3D stacking of ICs", IEEE International Interconnect Technology Conference, 207-209 (2007).
  26. Lu, J. Q., McMahon, J. J., and Gutmann, R. J., "3D Integration using adhesive, metal, and metal/adhesive as wafer bonding interfaces", MRS Proceedings, 1112(1) (2008).
  27. Enquist, P., "High density direct bond interconnect (DBI) technology for three dimensional integrated circuit applications", MRS Proceedings, 970(1) (2006).
  28. Enquist, P. "Scalability and Low Cost of Ownership Advantages of Direct Bond Interconnect (DBI(R)) as Drivers for Volume Commercialization of 3-D Integration Architectures and Applications", MRS Proceedings, 1112(33) (2009).
  29. http://www.i-micronews.com/lectureArticle.asp?id=2009
  30. S. Kang, J. Lee, E. Kim, N. Lim, S. Kim, S. Kim and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding" Journal of the Microelectronics & Packaging Society, 19(2), 29-33 (2012). https://doi.org/10.6117/kmeps.2012.19.2.029
  31. Eunsol Kim, Minjae Lee, Sungdong Kim and Sarah Eunkyung Kim, "Ti/Cu CMP process for wafer level 3D integration" Journal of the Microelectronics & Packaging Society, 19(3), 37-41 (2012). https://doi.org/10.6117/kmeps.2012.19.3.037

Cited by

  1. Cu/SiO2CMP Process for Wafer Level Cu Bonding vol.20, pp.2, 2013, https://doi.org/10.6117/kmeps.2013.20.2.047
  2. Effects of Wafer Warpage on the Misalignment in Wafer Level Stacking Process vol.20, pp.3, 2013, https://doi.org/10.6117/kmeps.2013.20.3.071
  3. Development of Cu CMP process for Cu-to-Cu wafer stacking vol.20, pp.4, 2013, https://doi.org/10.6117/kmeps.2013.20.4.081
  4. Warpage Characteristics Analysis for Top Packages of Thin Package-on-Packages with Progress of Their Process Steps vol.21, pp.2, 2014, https://doi.org/10.6117/kmeps.2014.21.2.065
  5. Effects of forming gas plasma treatment on low-temperature Cu–Cu direct bonding vol.55, pp.6S3, 2016, https://doi.org/10.7567/JJAP.55.06JC02
  6. Wafer level Cu–Cu direct bonding for 3D integration vol.137, 2015, https://doi.org/10.1016/j.mee.2014.12.012
  7. Warpage Characteristics of Bottom Packages for Package-on-Package(PoP) with Different Chip Mounting Processes vol.20, pp.3, 2013, https://doi.org/10.6117/kmeps.2013.20.3.063
  8. Research of Wafer Level Bonding Process Based on Cu–Sn Eutectic vol.11, pp.9, 2013, https://doi.org/10.3390/mi11090789