DOI QR코드

DOI QR Code

Physiochemical Characteristics for Bale Types and Storage Periods of Agricultural By-products as a Lignocellulosic Biomass

초본계 농업부산물 바이오매스의 저장방법 및 저장시기에 따른 이화학적 특성

  • Yu, Gyeong-Dan (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Na, Han Beur (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • An, Gi Hong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Koo, Bon-Cheol (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Ahn, Jong Woong (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Moon, Youn-Ho (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Cha, Young-Lok (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Yoon, Young Mi (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Yang, Jungwoo (Bioenergy Crop Research Center, National Institute of Crop Science, RDA) ;
  • Choi, In-Hu (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
  • 유경단 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 나한별 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안기홍 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 구본철 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 안종웅 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 문윤호 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 차영록 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 윤영미 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 양정우 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 최인후 (농촌진흥청 국립식량과학원 바이오에너지작물센터)
  • Received : 2013.07.24
  • Accepted : 2013.08.19
  • Published : 2013.09.30

Abstract

One of the abundant biomass for bioenergy production is thought to be agricultural by-products produced annually. The purpose of this study were to provide basic information about the changes of the moisture contents and chemical compositions for storage periods and bale types of rice straw, and it was attempted for the first time. The bale types of rice straw which were harvest in October 2011, were the square bale, the round bale, and the wrapped round bale type with plastic, respectively. Each of bale were stored in house, outdoor, and rain sheltering facilities condition for 1 year. The moisture contents and chemical compositions for each bale type are investigated for the 3-storage stages (0, 6, 12 month). While the moisture contents of the square and round bales stored in house condition were ranged from 20~25%, the square bale stored under the rain shelter facilities was showed the lowest moisture content less than 20% during the storage periods. For the chemical compositions, the cellulose and hemicellulose contents of rice straw bale stored in outdoor condition were decreased with the storage periods. However, in house condition, the chemical compositions of the square and round bales were slightly increased at the middle and the end of storage stages (6 and 12 months) compared with the initial storage stage (0 month). In conclusion, while optimum and favorable storage conditions of agricultural by-products is a house storage of the bale with plastic, if the bale can stored at outdoor, water penetration prevention such as the rain shelter facilities is required.

농업유래의 바이오매스 중 볏짚의 저장형태와 저장기간에 따른 수분함량 변화와 바이오매스의 화학적 성분 변화를 분석함으로써 바이오에탄올 생산을 위한 원료의 최적 저장방법을 제시하고자 하였다. 주요 결과는 아래와 같다. 1. 볏짚의 수분함량 변이를 측정한 결과 실내에서 보관한 사각곤포 및 원형곤포는 약 20~25%의 수분함량을 유지하였으며 실외에서 보관한 비가림 시설을 도입한 사각곤포의 경우 20%이하의 낮은 수분함량을 확인하였다. 2. 볏짚의 화학적 성분의 변이를 분석한 결과 실외보관곤포는 cellulose 및 hemicellulose의 함량이 큰 폭으로 감소하였으나, 실내에서 보관한 곤포들은 비닐원형곤포를 제외한 나머지 집속형태에서는 오히려 성분의 함량의 증가를 확인하였다. 3. 볏짚을 장기간 보관할 때에는 외부환경을 차단할 수 있는 실내에서 보관하거나 부득이하게 실외에서 보관할 때 최소 비가림 시설을 도입하여 수분함량 및 화학적 성분의 감소를 최소화해야 바이오에탄올 생산을 위한 고품질의 원료로써 이용될 수 있을 것이다.

Keywords

References

  1. Alizadeh, H., F. Teymouri, T. I. Gilbert, and B. E. Dale. 2005. Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochem. Biotech. 124 : 1133-1141. https://doi.org/10.1385/ABAB:124:1-3:1133
  2. An, G. H., B. C. Koo, Y. H. Choi, Y. H. Moon, Y. L. Cha, S. T. Bark, J. K. Kim, Y. M. Yoon, G. K. Park, and J. T. Kim. 2012. The effects of solidified sewage sludge as a soil cover material for cultivation of bioenergy crops in reclaimed land. Korean J. Crop Sci. 57(3) : 238-247. https://doi.org/10.7740/kjcs.2012.57.3.238
  3. Bark, S. T., B. C. Koo, Y. H. Moon, Y. L. Cha, Y. M. Yoon, J. K. Kim, G. H. An, K. G. Park, and D. H. Park. 2012. Study on the pretreatment of rice hull to enhance enzymatic saccharification efficiency. Appl. Chem. Eng. 23(4) : 399-404.
  4. Chung. J. H. 2008. Cellulosic ethanol production. Korean J. Biotechnol. Bioeng. 23(1) : 1-7.
  5. Demirbas, A. 2007. Progress and recent trends in biofuels. Progress Energy Combustion Sci. 33 : 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  6. Hong, S. G. 2004. Evaluation of agricultural biomass resources for renewable energy: Biomass from Orchards and non-paddy fields. J. Korean Soc. Agrie. Eng. 46(3) : 85-92. https://doi.org/10.5389/KSAE.2004.46.3.085
  7. Hwang, I. T., J. S. Hwang, H. K. Lim, and N. J. Park. 2010. Biorefinery based on weeds and agricultural residues. Korean J. Weed Sci. 30(4) : 340-360. https://doi.org/10.5660/KJWS.2010.30.4.340
  8. Kim, Y. H., J. J. Nam, S. Y. Hong, E. Y. Choe, S. G. Hong, and K. H. So. 2009. Establishment of database and distribution maps for biomass resources. Korean J. Soil Sci. Fert. 42(5) : 379-384.
  9. Koonin, S. E. 2006. Getting serious about biofuels? Science 311 : 435. https://doi.org/10.1126/science.1124886
  10. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Korean J. Weed Sci. 30(4) : 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  11. Park, W. K., N. B. Park, J. D. Shin, S. G. Hong, and S. I. Kwon. 2011. Estimation of biomass resource conversion factor and potential production in agricultural sector. Korean J. Environ. Agrie. 30(3) : 252-260. https://doi.org/10.5338/KJEA.2011.30.3.252
  12. Robson, P., M, Mos, J. Clifton-Brown, and I. Donnison. 2012. Phenotypic variation in senescence in Miscanthus: Towards optimising biomass quality and quantity. Bioenerg. Res. 5 : 95-105. https://doi.org/10.1007/s12155-011-9118-6
  13. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass. 4. National Renewable Energy Laboratory. Golden. CO.
  14. Zhu, L., J. P. O'Dwyer, V. S. Chang, C. B. Granda, and M. T. Holtzapple 2008. Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99 : 3817-3828. https://doi.org/10.1016/j.biortech.2007.07.033

Cited by

  1. 바이오매스 연료로서 미활용 농업부산물의 반탄화 특성 vol.59, pp.5, 2013, https://doi.org/10.5389/ksae.2017.59.5.017