DOI QR코드

DOI QR Code

Screening of Antagonistic Bacteria having Antifungal Activity against Various Phytopathogens

다양한 식물병원성 곰팡이에 항진균 활성을 갖는 길항미생물의 탐색

  • Received : 2014.11.04
  • Accepted : 2014.12.09
  • Published : 2014.12.30

Abstract

The aim of this study was to isolate a potential multifunctional biocontrol agent from bacteria for control of multiple plant diseases as an alternative to fungicides. A total of 201 strains were isolated from soil undamaged by repeated cultivation in Sunchang and their ability to produce antibiotics, siderophores and extracellular enzymes such as protease, cellulase and amylase was investigated. Selected strain SCS3 produced cellulose, protease and amylase. This strain also produced siderophores and showed excellent antifungal activity against various phytopathogens. SCS3 was identified as Bacillus subtilis using 16S rRNA sequencing, and named Bacillus subtilis SCS3. Finally, physiological and biochemical characteristics of B. subtilis SCS3 were examined. From the results, B. subtilis SCS3 was found to be a useful multifunctional biocontrol agent against various phytopathogens.

미생물을 이용한 생물학적 방제제의 개발을 위해 연작피해가 없는 순창군 토양으로부터 다양한 미생물 201종을 분리하였고, 이들의 생물학적 활성을 조사하였다. 201종의 분리 세균 중에서 다양한 식물병원성 곰팡이에 대하여 항균활성이 우수한 5종을 선별하였다. 5종의 분리주에 대하여 siderophore를 생산하며 cellulase, protease, amylase와 같은 곰팡이 세포벽 분해효소를 생산하는 능력이 가장 우수한 SCS3 균주를 최종 선별하였다. 최종 선별한 균주 SCS3의 형태학적, 생리학적 및 생화학적 특성을 조사하였고, 16S rRNA 염기서열의 분석에 의해 B. subtilis SCS3으로 명명하였으며, 염기서열 분석에 기반하여 계통수를 작성하였다. 이상의 결과로부터 B. subtilis SCS3은 식물병원성 곰팡이의 방제를 위한 생물학적 방제제로 유용하게 이용될 수 있을 것으로 생각한다.

Keywords

References

  1. Jang CS, Lim JH, Seo MW, Song JY, Kim HG. Direct detection of Cylindrocarpon destructans, root rot pathogen of ginseng by nested PCR from soil samples. Mycobiology 2010;38: 33-8. https://doi.org/10.4489/MYCO.2010.38.1.033
  2. Kang DW, Ryu IH, Han SS. The isolation of Bacillus subtilis KYS-10 with antifungal activity against plant pathogens. Kor J Pestic Sci 2012;16:178-86. https://doi.org/10.7585/kjps.2012.16.2.178
  3. Guo R, Liu X, Li S, Miao Z. In vitro inhibition of fungal rootrot pathogens of Panax notoginseng by rhizobacteria. Plant Pathol J 2009;25:70-6. https://doi.org/10.5423/PPJ.2009.25.1.070
  4. Heydari A, Misaghi IJ, McCloskey WB. Effect of three soil applied herbicide on populations of plant disease suppressing bacteria in the cotton rhizosphere. Plant Soil 1997;195:75-81. https://doi.org/10.1023/A:1004299632566
  5. Schouten A, Van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, De Vos CH, Lemanceau P, Raaijmakers JM. Defense responses of Fusarium oxysporum to 2,4-DAPG, a broad spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant-Microbe Interact 2004;17:1201-11. https://doi.org/10.1094/MPMI.2004.17.11.1201
  6. Ordentlich, A, Elad Y, Chet I. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 1988;78:84-7.
  7. Alexopoulos CJ, Mims CW, Blackwell M. Introductory mycology. 4th ed. New York: John Wiley & Sons; 2009.
  8. Dannis PG, Hirsch PR, Smith SJ, Taylor RG, Valsami-Jones E, Miller AJ. Linking rhizoplane pH and bacterial density at the microhabitat scale. J Microbiol Methods 2009;76:101-4. https://doi.org/10.1016/j.mimet.2008.09.013
  9. Yeo SH, Yook YM, Kim HS. Isolation and characterization of plant growth promoting rhizobacterium Bacillus subtilis YK-5 from soil. Kor Soc Biotechnol Bioeng J 2009;24:334-40.
  10. Zhang J, Liu J, Meng L, Ma Z, Tang X, Cao Y, Sun L. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. J Microbiol 2012;50:191-8. https://doi.org/10.1007/s12275-012-1472-3
  11. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci 2012;17:478-86. https://doi.org/10.1016/j.tplants.2012.04.001
  12. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 2012;48:489-99. https://doi.org/10.1007/s00374-012-0691-4
  13. Elad Y, Baker R. Influence of trace amounts of cations and siderophore-producing Pseudomonas on chlamydiospore germination of Fusarium oxysporum. Phytopathology 1985;75:1047-52. https://doi.org/10.1094/Phyto-75-1047
  14. Van Dijk K, Nelson EB. Fatty acid competition as a mechanism by which Emterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 2000;66:5340-7. https://doi.org/10.1128/AEM.66.12.5340-5347.2000
  15. Audenaert K, Pattery T, Cornelis P, Hofte M. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2 role of salicylic acid, pyochelin and pyocyanin. Mol Plant-Microbe Interact 2002;15:1147-56. https://doi.org/10.1094/MPMI.2002.15.11.1147
  16. Yoon MY, Seo KH, Lee SH, Choi GJ, Jang KS, Choi YH, Cha B, Kim JC. Antifungal activity of benzoic acid from Bacillus subtilis GDYA-1 against fungal phytopathogens. Res Plant Dis 2012;18:109-16. https://doi.org/10.5423/RPD.2012.18.2.109
  17. Glick GR. The enhancement of plant growth by free-living bacteria. Can J Microbiol 1995;41:109-17. https://doi.org/10.1139/m95-015
  18. Sanjay KS, Vinayak RT, Rakesh KJ, Surendra V, Satyendra KG. An antibiotic heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease. Microb Cell Fact 2010;9:59. https://doi.org/10.1186/1475-2859-9-59
  19. Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hacker M, van Dijl JM. Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev 2004;68:207-33. https://doi.org/10.1128/MMBR.68.2.207-233.2004
  20. Thu Hang NT, Oh SO, Kim GH. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J 2005;21:59-63. https://doi.org/10.5423/PPJ.2005.21.1.059
  21. Lee GW, Kim MJ, Park JS, Chae JC, Soh BY, Ju JE, Lee KJ. Biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res Plant Dis 2011;17:86-9. https://doi.org/10.5423/RPD.2011.17.1.086
  22. Kim YK, Hong SJ, Shim CK, Kim MJ, Choi EJ, Lee MH, Park JH, Han EJ, An NH, Jee HJ. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Res Plant Dis 2012;18:201-9. https://doi.org/10.5423/RPD.2012.18.3.201
  23. Kim BS, Cho KY. Antifungal effects on plant pathogenic fungi and characteristics of antifungal substances produced by Bacillus subtilis SJ-2 isolated from sclerotia of Rhizoctonia solani. Plant Pathol J 1995;11:165-72.
  24. Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz 1996;91:755-60. https://doi.org/10.1590/S0074-02761996000600020
  25. Teather R, Wood PJ. Use of congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982;43:777-80.
  26. Kim MH, Ko HS, Yook YM, Kim HS. Isolation and characterization of microorganism with broad antifungal activity against phytopathogenic fungi. Kor Soc Biotechnol Bioeng J 2008;23:219-25.
  27. Lee GJ, Han JH, Shin JH, Kim HT, Kim KS. Antifungal activity of Bacillus sp. GJ-1 against Phytophthora capsici. Kor J Mycol 2013;41:112-7. https://doi.org/10.4489/KJM.2013.41.2.112
  28. Ki JS, Zhang W, Qian PY. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J Microbiol Methods 2009;77:48-57. https://doi.org/10.1016/j.mimet.2009.01.003
  29. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinf 2004;5:150-63. https://doi.org/10.1093/bib/5.2.150
  30. Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
  31. Sneath PHA, Mair NS, Sharpe ME, Holt JG. Bergey's manual of systematic bacteriology. Vol. 2 New York: Wiliilams and Willkins Press; 1984.
  32. Holt JG, Krieg NR, Sneath PHA, Staley JT, Wiliilams ST. Bergey's manual of determinative bacteriology. 9th ed. New York: Wiliilams willkins; 1994.
  33. Tominaga Y, Tsujisaka Y. Purification and some prosperities of two chitinase from Streptomyces sorientalis which lyse Phizopus cell wall. Agric Biol Chem 1976;40:2325-33. https://doi.org/10.1271/bbb1961.40.2325
  34. Watanabe T, Oyanagi W, Suzuki K, Tanaka H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol 1990;172:4017-22. https://doi.org/10.1128/jb.172.7.4017-4022.1990
  35. Kim SD, Woo SM. Structural identification of $Siderophere_{AH18}$ from Bacillus subtilis AH18, a biocontrol agent of Phytophthora blight disease in red-pepper. Kor J Microbiol Biotechnol 2008;36:326-35.
  36. Lee BD, Park H. Control effect of Bacillus subtilis B-4228 on root rot of panax ginseng. J Ginseng Res 2004;28:1-7. https://doi.org/10.5142/JGR.2004.28.1.067
  37. Zhang CX, Zhao X, Jing TX, Chida T, Chen H, Shen SH. Phenotypic and biological properties of two antagonist Bacillus subtilis strain. World J Microbiol Biotechnol 2008;24:1669-79. https://doi.org/10.1007/s11274-008-9680-z
  38. Katska C, Krystyna T, Anna M. Antifungal activity of Bacillus coagulans against Fusarium sp.. Acta Microbiol Pol 2002;51:275-83.
  39. Kim SD, Han OK, Lee ET. Chitinase of multifunctional antagonistic bacterium Bacillus amyloliquefaciens 7079 against phytophathogenic fungi. Kor J Appl Microbiol Biotechnol 2001;29:142-8.
  40. Gerhardt GJ, Kim JC, Jang KS, Nam MH, Lee SW, Kim HT. Biocontrol activity of Acremonium strictum BCP against Botrytis disease. Plant Pathol J 2009;25:165-71. https://doi.org/10.5423/PPJ.2009.25.2.165
  41. Seki T, Chung CK, Mikami H, Oshima Y. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int J Syst Bacteriol 1978;28:182-9. https://doi.org/10.1099/00207713-28-2-182

Cited by

  1. Isolation and Characterization of Bacillus Species Having Antifungal Activity Against Pathogens of Ginseng Damping Off vol.20, pp.4, 2016, https://doi.org/10.7585/kjps.2016.20.4.380