DOI QR코드

DOI QR Code

Synthesis and characterization of novel PbS-graphene/$TiO_2$ composite with enhanced photocatalytic activity

  • Ullah, Kefayat (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ye, Shu (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2013.02.23
  • Accepted : 2013.06.24
  • Published : 2014.05.25

Abstract

In this study novel material PbS-graphene/$TiO_2$ composites were prepared by sol-gel method. The "as- prepared" composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and Raman spectroscopic analysis. The photocatalytic activities were investigated by the degradation of methylene blue (MB) as a standard dye. We observed that coupling of PbS with $TiO_2$ extends the photoresponse to visible region. This revealed that the excellent photoinduced charge separation abilities and transport properties of graphene make these hybrids as potential candidates for developing high-performance next-generation devices.

Keywords

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183. https://doi.org/10.1038/nmat1849
  2. A.K. Geim, Science 324 (2009) 1530. https://doi.org/10.1126/science.1158877
  3. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110 (2010) 132. https://doi.org/10.1021/cr900070d
  4. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315 (2007) 490. https://doi.org/10.1126/science.1136836
  5. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498. https://doi.org/10.1021/nl802558y
  6. M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341. https://doi.org/10.1021/cr00017a016
  7. P.V. Kamat, Chem. Rev. 93 (1993) 267. https://doi.org/10.1021/cr00017a013
  8. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  9. M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, J. Zhao, Angew. Chem. Int. Ed. 48 (2009) 6081. https://doi.org/10.1002/anie.200900322
  10. G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chem. Commun. 33 (2007) 3425.
  11. Y. Shiraishi, T. Hirai, J. Photochem. Photobiol. C 9 (2008) 157. https://doi.org/10.1016/j.jphotochemrev.2008.05.001
  12. H. Lee, H.C. Leventis, S.-J. Moon, P. Chen, S. Ito, S.A. Haque, T. Torres, F. Nuesch, T. Geiger, S.M. Zakeeruddin, M. Gratze, M.K. Nazeeruddin, Adv. Funct. Mater. 19 (2009) 2735. https://doi.org/10.1002/adfm.200900081
  13. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269. https://doi.org/10.1126/science.1061051
  14. T. Hirakawa, P. Kamat, J. Am. Chem. Soc. 127 (2005) 3928. https://doi.org/10.1021/ja042925a
  15. V. Subramanian, E. Wolf, P. Kamat, J. Phys. Chem. B 105 (2001) 11439. https://doi.org/10.1021/jp011118k
  16. T. Ghosh, K.-Y. Cho, K. Ullah, V. Nikam, C.-Y. Park, Z.-D. Meng, W.-C. Oh, J. Ind. Eng. Chem. 19 (3) (2013) 797. https://doi.org/10.1016/j.jiec.2012.10.020
  17. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4 (2010) 380. https://doi.org/10.1021/nn901221k
  18. X. Zhang, Y. Sun, X. Cui, Z. Jiang, Int. J. Hydrogen Energy 37 (2012) 811. https://doi.org/10.1016/j.ijhydene.2011.04.053
  19. T. Ghosh, W.C. Oh, J. Photocatal. Sci. 3 (1) (2012) 17.
  20. X. Geng, L. Niu, Z. Xing, R. Song, G. Liu, M. Sun, G. Cheng, H. Zhong, Z. Liu, Z. Zhang, L. Sun, H. Xu, L. Lu, L. Liu, Adv. Mater. 22 (2010) 638. https://doi.org/10.1002/adma.200902871
  21. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, Adv. Mater. 22 (2010) 103. https://doi.org/10.1002/adma.200901920
  22. J. Chu, X. Li, P. Xu, J. Mater. Chem. 21 (2011) 11283. https://doi.org/10.1039/c1jm11058f
  23. H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, Y. Wang, W. Zhang, C.M. Li, J. Phys. Chem. C 115 (2011) 12209. https://doi.org/10.1021/jp201178a
  24. F.A. Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning, F.E. Osterloh, Chem. Commun. 19 (2008) 2206, http://dx.doi.org/10.1039/b718796.
  25. X.Y. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, J. Mater. Chem. 20 (2010) 2801. https://doi.org/10.1039/b917240h
  26. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4 (2010) 380. https://doi.org/10.1021/nn901221k
  27. S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, A. Nounah, A. Ihlal, Y. Ait-Ichou, Mater. Sci. Eng. C 29 (2009) 1616. https://doi.org/10.1016/j.msec.2008.12.024
  28. W.C. Oh, F.J. Zhang, M.L. Chen, J. Ing. Eng. Chem. 16 (2010) 299. https://doi.org/10.1016/j.jiec.2009.09.065
  29. L. Zhu, Z.D. Meng, W.C. Oh, Chin. J. Catal. 32 (2011) 926. https://doi.org/10.1016/S1872-2067(10)60208-2
  30. Y. Yokomizo, S. Krishnamurthy, P.V. Kamat, Catal. Today 199 (2013) 36. https://doi.org/10.1016/j.cattod.2012.04.045
  31. K. Akihiko, N. Ryo, I. Akihide, K. Hideki, Chem. Phys. 339 (2007) 104. https://doi.org/10.1016/j.chemphys.2007.07.024
  32. Y. Li, X. Li, J. Li, J. Yin, Water Res. 40 (2006) 1119. https://doi.org/10.1016/j.watres.2005.12.042
  33. Z.-D. Meng, L. Zhu, T. Ghosh, C.-Y. Park, K. Ullah, V. Nikam, W.-C. Oh, Bull. Korean Chem. Soc. 33 (11) (2012) 3761. https://doi.org/10.5012/bkcs.2012.33.11.3761
  34. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. Rao, M. Ishigami, ACS Nano 5 (3) (2011) 1594. https://doi.org/10.1021/nn1031017
  35. K. Kudin, B. Ozbas, H. Schniepp, R. Prud'homme, I. Aksay, R. Car, Nano Lett. 8 (2008) 36. https://doi.org/10.1021/nl071822y
  36. Z.-D. Meng, L. Zhu, S. Ye, Q. Sun, K. Ullah, K.-Y Cho, W.-C. Oh, Nanoscale Res. Lett. 8 (2013) 189. https://doi.org/10.1186/1556-276X-8-189
  37. A. Das, B. Chakraborty, A.K. Sood, Bull. Mater. Sci. 31 (June (3)) (2008) 579. https://doi.org/10.1007/s12034-008-0090-5

Cited by

  1. Synthesis and Characterization of ZnS and ZnS/TiO2 Nanocomposites and Their Enhanced Photo-decolorization of MB and 1,5-Diphenyl Carbazide vol.51, pp.4, 2014, https://doi.org/10.4191/kcers.2014.51.4.307
  2. Optical and photocatalytic properties of novel heterogeneous PtSe2-graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques vol.21, pp.5, 2014, https://doi.org/10.1016/j.ultsonch.2014.04.016
  3. Microwave synthesis of a CoSe2/graphene-TiO2 heterostructure for improved hydrogen evolution from aqueous solutions in the presence of sacrificial agents vol.5, pp.24, 2015, https://doi.org/10.1039/c5ra00065c
  4. Bubble template synthesis of CdLa2S4 hollow spheres/reduced graphene oxide nanocomposites as efficient and sustainable visible-light driven photocatalysts vol.5, pp.110, 2014, https://doi.org/10.1039/c5ra18014g
  5. Ultrasonic-Assisted Synthesis of Pd-MWCNT/TiO2 Catalysts and Its Application in the Photodegradation of Reactive Black B vol.23, pp.7, 2014, https://doi.org/10.1080/1536383x.2014.915809
  6. Entanglement of CeO2 Nanorods and Graphene Nanoribbons and their Properties Studies of Nanocomposites vol.814, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/msf.814.153
  7. Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices vol.27, pp.5, 2014, https://doi.org/10.1007/s10854-016-4386-8
  8. The synthesis of large area graphene/carbon nanotubes as additive material and their enhanced specific capacitance vol.27, pp.9, 2016, https://doi.org/10.1007/s10854-016-5019-y
  9. Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te) vol.6, pp.1, 2014, https://doi.org/10.1063/1.4940304
  10. Ultrasonic Synthesis of CoSe2-Graphene-TiO2 Ternary Composites for High Photocatalytic Degradation Performance vol.54, pp.3, 2017, https://doi.org/10.4191/kcers.2017.54.3.02
  11. PbS-SnO2 nanocomposite with enhanced magnetic, photocatalytic and antifungal properties vol.29, pp.2, 2014, https://doi.org/10.1007/s10854-017-8007-y
  12. A simple ultrasonic-synthetic route of Cu2Se-graphene-TiO2 ternary composites for carbon dioxide conversion processes vol.26, pp.12, 2014, https://doi.org/10.1080/1536383x.2018.1504211
  13. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications vol.12, pp.3, 2019, https://doi.org/10.1007/s12274-018-2225-3
  14. Solar‐Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges vol.4, pp.3, 2014, https://doi.org/10.1002/solr.201900400
  15. Active Synthesis of Graphene Nanosheet-Embedded PbS Octahedral Nanocubes for Prompt Sonocatalytic Degradation vol.30, pp.9, 2014, https://doi.org/10.1007/s10904-020-01531-8
  16. Light-Excited Ag-Doped TiO2−CoFe2O4 Heterojunction Applied to Toluene Gas Detection vol.11, pp.12, 2021, https://doi.org/10.3390/nano11123261
  17. Investigating the physicochemical response of CdS quantum-dots deposition over SiO2-incorporated TiO2 photoanodes for solar cells vol.636, pp.None, 2022, https://doi.org/10.1016/j.colsurfa.2021.128131