DOI QR코드

DOI QR Code

Long term decomposition and nutrients dynamics of Quercus mongolica and Pinus densiflora leaf litter in Mt. Worak National Park

월악산 국립공원에서 신갈나무와 소나무 낙엽의 장기적 분해 및 영양염류 동태

  • 원호연 (공주대학교 생명과학과) ;
  • 김덕기 (국립생태원 위해생물연구팀) ;
  • 이규진 (생태계 순환 연구소) ;
  • 박상봉 (공주대학교 생명과학과) ;
  • 최중석 (공주대학교 생명과학과) ;
  • 문형태 (공주대학교 생명과학과)
  • Received : 2014.08.25
  • Accepted : 2014.10.21
  • Published : 2014.10.31

Abstract

Decay rate and nutrient dynamics during leaf litter decomposition of deciduous broad leaf Quercus mongolica and evergreen needle leaf Pinus densiflora were investigated for 69 months from December 2005 to September 2011 in Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. Percent remaining weight of Q. mongolica and P. densiflora leaf litter after 69 months elapsed was $35.4{\pm}2.3%$ and $16.1{\pm}1.3%$, respectively. Decomposition of P. densiflora leaf litter was significantly faster than that of Q. mongolica leaf litter. Decay constant (k) of Q. mongolica and P. densiflora leaf litter after 69 months elapsed was 5.97 and 10.50, respectively. Initial C/N and C/P ratio of Q. mongolica leaf litter was 43.1 and 543.9 respectively. After 69 months elapsed, C/N and C/P ratio of decomposing Q. mongolica leaf litter decreased to 8.7 and 141.2, respectively. Initial C/N and C/P ratio of P. densiflora leaf litter was 151.2 and 391.4, respectively. After 69 months elapsed, C/N and C/P ratio of decomposing P. densiflora leaf litter decreased to 22.9. and 136.5. respectively. Initial concentration of N, P, K, Ca and Mg in leaf litter was 9.30, 0.23, 2.36, 3.14, 1.11 mg/g in Q. mongolica, and 3.02, 0.09, 1.00, 3.84, 0.62 mg/g in P. densiflora, respectively. Initial concentration of N and P in Q. mongolica leaf litter was significantly higher than those in P. densiflora. After 69 months elapsed, remaining N, P, K, Ca and Mg in decomposing leaf litter were 73.8, 60.9, 17.2, 20.3, 35.1 % in Q. mongolica, and 69.5, 75.3, 12.3, 10.9, 10.8 % in P. densiflora, respectively.

국가장기생태 연구사업의 일환으로 낙엽활엽수인 신갈나무와 상록침엽수인 소나무 낙엽의 분해율 및 분해과정에 따른 영양염류 함량 변화를 파악하였다. 이를 위해 2005년 12월 월악산의 신갈나무림과 소나무림에 낙엽주머니를 설치하고 2006년 3월부터 2011년 9월까지 69개월간 3개월 간격으로 낙엽주머니를 수거하여 분해율, 분해상수(k), 그리고 분해과정에 따른 C/N비, C/P비의 변화와 영양염류의 동태를 조사하였다. 분해 69개월경과 후 신갈나무와 소나무 낙엽의 잔존률은 각각 $35.4{\pm}2.3%$$16.1{\pm}1.3%$로 소나무 낙엽의 분해가 신갈나무 낙엽의 분해보다 빠르게 진행되는 것으로 나타났다. 분해 69개월경과 후 신갈나무 낙엽과 소나무 낙엽의 분해상수(k)는 각각 5.97과 10.50으로 소나무 낙엽의 분해상수가 높게 나타났다. 신갈나무 낙엽의 분해과정에 따른 C/N, C/P 비율은 초기에 각각 43.1, 543.9이었으나 69개월경과 후에는 각각 8.7과 141.2로 점차 감소하였으며, 소나무 낙엽의 경우 초기 C/N, C/P 비율은 각각 151.2와 391.4로 나타났고, 분해 69개월경과 후에는 각각 22.9와 136.5로 나타났다. 낙엽의 초기 N, P, K, Ca, Mg의 함량은 신갈나무 낙엽에서 각각 9.30, 0.23, 2.36, 3.14, 1.11mg/g, 소나무 낙엽에서 각각 3.02, 0.09, 1.00, 3.84, 0.62mg/g으로 신갈나무 낙엽에서 질소와 인의 함량이 현저히 높았다. 분해 69개월경과 후 N, P, K, Ca, Mg의 잔존률은 신갈나무 낙엽에서 각각 73.8, 60.9, 17.2, 20.3, 35.1%, 소나무 낙엽에서 각각 69.5, 75.3, 12.3, 10.9, 10.8%로 나타났다.

Keywords

References

  1. Baker T.T., B.G. Lockaby, W.H. Conner, C.E. Meier, J.A. Stanturf, M.K. Burke(2001) Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. J American Soc of Soil Sci 65: 1334-1347. https://doi.org/10.2136/sssaj2001.6541334x
  2. Berg B. and H. Staaf(1981) Leaching accumulation and release of nitrogen in decomposing forest litter. Ecological Bulletin 33: 163-178.
  3. Berg B. and O. Theander(1984) Dynamics of some nitrogen fraction in decomposition Scots pine needle litter. Pedobiologia 27: 264-267.
  4. Blanco J.A., J.B. Imbert, F.J. Castillo(2008) Nutrient return via litterfall in two constrating Pinus sylvestris forests in the Pyrenees under different thinning intensities. Forest Ecology and Management 256: 1840-1852. https://doi.org/10.1016/j.foreco.2008.07.011
  5. Bocock K.L.(1964) Changes in the amount of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of soil fauna. Eco. 52: 273-284.
  6. Bockheim J.G., E.A. Jepsen, D.M. Heisey(1991) Nutrient dynamics of decomposing leaf litter of four tree species on soil in northern Wisconsin. Can J For Res 21: 803-812. https://doi.org/10.1139/x91-113
  7. Cole D.W. and M. Rapp(1981) Elemental cycling in forest ecosystems. In Dynamic properties of forest (Reiche DE, eds). International Biological Programme 23. Cambridge University Press, Cambridge. pp 341-409.
  8. Edmonds R.L. and T.B. Thomas(1995) Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest, Olympic National Park, Washington. Can J For Res 25: 1049-1057. https://doi.org/10.1139/x95-115
  9. Fahey T.J.(1983) Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming. Ecological Monographs 53(1): 51-72. https://doi.org/10.2307/1942587
  10. Fogel R. and K. Cromack Jr.(1977) Effect of habitat and substrate quality on Donglas-fir litter decomposition in western Oregon. Canadian Journal of Botany 55: 1632-1640. https://doi.org/10.1139/b77-190
  11. Kelly J.M. and J.J Beauchamp(1987) Mass loss and Nutrient changes in decomposing upland oak and mesic-mixed hardwood leaf litter. Soil Sci Soc Am J 51: 1616-1622. https://doi.org/10.2136/sssaj1987.03615995005100060038x
  12. Kim C.S., J.H. Lim, J.H. Shin(2003) Nutrient dynamics in litterfall and decomposing leaf litter at the Kwangneung deciduous broad-leaved natural forest. Kor Jour of Agri Forest Meteoro 5(2): 87-93. (in Korean with English abstract)
  13. Klemmedson J.O., C.E. Meier, R.E. Campbell(1985) Needle decomposition and nutrient release in ponderosa pine ecosystems. Forest Science 31: 647-660.
  14. Lee E.K., J.H. Lim, C.S. Kim, Y.K. Kim(2006) Nutrient dynamics in decomposing leaf litter and litter production at the long-term ecological research site in Mt. Gyebang. J Ecol Field Biol 29(6): 585-591. https://doi.org/10.5141/JEFB.2006.29.6.585
  15. Lee J.Y., D.K. Kim, H.Y. Won, H.T. Mun(2013) Organic carbon distribution and budget in the Pinus densiflora forest at Mt. Worak. national park. Kor. J. Env. Ecol. 27(5) : 561-570. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2013.27.5.561
  16. Laskowski R, M. Niklinska, M. Maryanski(1995) The dynamics of chemical elements in forest litter. Ecology 76(5): 1393-1406. https://doi.org/10.2307/1938143
  17. Meentemeyer V, E.O. Box, R.T Thompson(1982) World patterns and amounts of terrestrial litter production. BioScience 32: 125-128. https://doi.org/10.2307/1308565
  18. Melillo J.M., J.D. Aber JD, J.F. Muratore(1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621-626. https://doi.org/10.2307/1936780
  19. Millar C.S.(1974) Decomposition of coniferous leaf litter. In Biology of plant litter decomposition (Dickson CH, Pugh GJF, eds). Vol 1. Academic Press, New York. pp 105-128.
  20. Moretto A.S., R.A. Distel, N.G. Didoné(2001) Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology 18(1): 31-37. https://doi.org/10.1016/S0929-1393(01)00151-2
  21. Mun H.T. and H.T Joo(1994) Litter production and decomposition in the Querces acutissima and Pinus rigida forests. J Ecol Field Bio 17(3): 345-353.
  22. Mun H.T. and J.H Pyo(1994) Dynamics of nutrient and chemical constituents during litter decomposition. J Ecol Field Bio 17(4): 501-511.
  23. Mun H.T.(2009) Weight loss and nutrient dynamics during leaf litter decomposition of Quercus mongolica in Mt. Worak National Park. J Ecol Field Biol 32(2): 123-127. https://doi.org/10.5141/JEFB.2009.32.2.123
  24. Namgung J., A.R. Han, H.T. Mun(2008) Weight loss and nutrient dynamics during leaf litter decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park. J Ecol Field Biol 31(4): 291-295. https://doi.org/10.5141/JEFB.2008.31.4.291
  25. Olson J.S.(1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 321-331.
  26. Seereeram S. and P. Lavender(2003) Analysis of leaf litter to establish its suitability for compositing to produce a commercially saleable product. A Report Prepared for SWAP. Aqua Enviro. pp 18.
  27. Shin C.H., H.Y Won, H.T Mun(2011) Litter production and nutrient input via litterfall in Quercus mongolica forest at Mt. Worak national park. J Ecol Field Bio 34(1): 107-113. https://doi.org/10.5141/JEFB.2011.013
  28. Swift M.J., O.W. Heal, J.M. Anderson(1979) Decomposition in terrestrial ecosystems. Studies in Ecology Vol 5. Univ of California Press, Berkley and Los Angeles. 372p.
  29. Taylor B.R., D. Parkinson, W.F.J. Parsons(1989) Nitrogen and lignin content as predictor of litter decay rates: A microcosm test. Ecology 70: 97-104. https://doi.org/10.2307/1938416
  30. Won H.Y, K.H Oh, H.T Mun(2012) Decay rate and nutrient dynamics during litter decomposition of Quercus acutissima in Gongju and Jinju. J. of Wetland Reserch 14(4): 537-545. (in Korean with English abstract)
  31. Won H.Y, K.H Oh, J.H Pyo, H.T Mun(2012) Decay rate and nutrient dynamics during litter decomposition of Quercus acutissima and Quercus mysinaefolia Kor. J. Env. Ecol. 26(1) : 74-81. (in Korean with English abstract)
  32. Xu X., E. Hirata, T. Enoki, Y. Tokashiki(2004) Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecology 173: 161-170. https://doi.org/10.1023/B:VEGE.0000029319.05980.70
  33. Yoo J.S.(1991) Weight loss and nutrient dynamics during litter decomposition of Pinus thunbergii and Castanea crenata. M.S. Dissertation, Kongju University. 22p. (in Korean with English abstract)