DOI QR코드

DOI QR Code

Present and Perspective on Insect Biotechnology

곤충생물공학의 현재와 전망

  • Choi, Hwan-Suk (Department of Biochemical and Polymer Engineering, Chosun University) ;
  • Kim, Sun-Am (Jeonnam Bio Control Center, Jonnam Bioindustry Foundation) ;
  • Shin, Hyun-Jae (Department of Biochemical and Polymer Engineering, Chosun University)
  • 최환석 (조선대학교 생명화학고분자공학과) ;
  • 김선암 ((재)전남생물산업진흥원 생물방제연구센터) ;
  • 신현재 (조선대학교 생명화학고분자공학과)
  • Received : 2015.10.14
  • Accepted : 2015.11.09
  • Published : 2015.12.27

Abstract

Insects are the most successful organisms on earth in terms of their diversity and adaptability. Insect biotechnology using this insect resource is an emerging area for future biotechnology with various applications. Insect resources have long been used to make food and/or functional food, feed, cosmetics as well as medicine and industrial ingredients. Recently, one of the most well-known industrial material from insect is spider silk that could be commercialize in near future. The insect cell lines have been used to express recombinant proteins that were difficult to be functional expression. For public purpose, while, the insect could be good amenity source and plant farming, so leisure resource. Only the interdisciplinary research will guarantee the successful story for insect biotechnology. And biochemical engineers should used insect as a bioresource for new products with applications in medicine, agriculture, and industrial biotechnology in near future. This review will cover state-of-the art of this field and the research and application areas of insect biotechnology and the possible role of biochemical engineer for the development of the future biotechnology using this bioresource.

Keywords

References

  1. Rural Development Administration of KOREA, Submission of manuscript. http://www.rda.go.kr. (2011).
  2. Korea Rural Economic Institute, Submission of manuscript. http:// www.krei.re.kr. (2007).
  3. Yoon, H. J., S. E. Kim, Y. S. Kim, S. B. Lee, and I. G. Park (2005) Comparison of colony development of the Korean native Bumblebee, Bombus ignitus and B. ardens depending on pasturage time and place at field net house. Kor. J. Apicult. 20: 133-142.
  4. Chung, S. H., M. S. Kim, and K. S. Ryu (1997) Effect of silkworm extract on intestinal ${\alpha}$-glucosidase activity in mice administrated with ahigh carbohydrate-containing diet. Korean J. Seric. Sci. 39: 86-92.
  5. Kim, Y. S., K. Y. Kim, P. D. Kang, J. Y. Cha, J. S. Heo, and Y. S. Cho (2008) Effect of silkworm (Bombyxmori) excrement powder on the alcoholic hepatotoxicity in rats. J. Life Sci. 18: 1342-1347. https://doi.org/10.5352/JLS.2008.18.10.1342
  6. Ryu, K. S., H. S. Lee, and S. Y. Kim (1999) Effects of Bombyx mori L. extracts on carbon tetrachloride-induced hepatotoxicity in mice. J. Life Sci. 9: 375-381.
  7. Cho, C. H., W. S. Cha, and J. S. Kim (1989) Effect of temperature, time and pH on the extraction of protein in a chrysalis of silkworm. KSBB J. 4: 65-68.
  8. Kang, G. D., K. H. Lee, S. G. Do, C. S. Kim, J. G. Suh, Y. S. Oh, and J. H. Nham (2001) Effect of silk fibroin on the protection of alcoholic hepatotoxicity in the liver of alcohol preference mouse. Int. J. Indust. Entomol. 2: 15-18.
  9. Yun, E. Y., S. H. Kim, W. S. Kang, B. R. Jin, K. Y. Kim, H. R. Kim, M. S. Han, and S. K. Kang (1997) Molecular cloning and expression of the novel attacin-like antibacterial protein gene isolated from the Bombyx mori. Korean J. Appl. Entomol. 36: 331-340.
  10. Ryu, H. Y, J. C. Heo, J. S. Hwang, S. W. King, C. Y. Yun, S. H. Lee, and H. Y. Sohn (2008) Screening of thrombin inhibitor and its DPPH radical scavenging activity from wild insects. J. Life Sci. 18: 363-368. https://doi.org/10.5352/JLS.2008.18.3.363
  11. Ahn, M. Y., B. S. Hahn, K. S. Ryu, and S. I. Cho (2002) Protective effects of water/methaol extracts of cricket on the acute hepatic damages in the ICR-mice induced by administration of CCl4. Kor. J. Food Sci. Technol. 34: 684-687.
  12. Han, S. M., S. H. Lee, C. Y. Yun, S. W. Kang, K. G. Lee, I. S. Kim, E. Y. Yun, P. J. Lee, S. Y. Kim, and J. S. Hwang (2006) Inhibition of nitric oxide production by ladybug extracts (Harmonia axyridis) in LPS activated BV-2 cells. Kor. J. Appl. Entomol. 45: 31-36.
  13. Heo, J. C, J. Y. Park, J. S. Hwang, H. C. Park, S. W. Kang, S. J. Hwang, C. Y. Yun, T. K. Kwon, and S. H. Lee (2006) Comparison of in vitro antioxidant activity and cyclooxygenase-2 promoter inhibitory activity in Harmonia axyridis Pallas and Coccinella septempunctata Linne. Kor. J. Food Preserv. 13: 513-518.
  14. Morota, A., H. Isawa, Y. Orito, S. Iwanaqa, Y. Chinzei, and M. Yuda (2006) Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin from salivary glands of the assassin bug. Triatoma infestans. FEBS J. 273: 2955-2962. https://doi.org/10.1111/j.1742-4658.2006.05306.x
  15. Kim, H. A., S. H. Lee, Y. C. Choi, K. H. Park, J. S. Hwang, N. J. Kim, and S. H. Nam (2013) Comparison of fibrinolytic activity from Korean indigenous insects. J. Seric. Entomol. Sci. 51: 147-152.
  16. Boore, J. L. (1999) Animal mitochondrial genomes. Nucleic Acids Res. 27: 1767-1780. https://doi.org/10.1093/nar/27.8.1767
  17. Arnoldi, F. G., K. Ogoh, Y. Ohmiya, and V. R. Viviani (2007) Mitochondrial genome sequence of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae): mitochondrial genes utility to investigate the evolutionary history of Coleoptera and its bioluminescence. Gene 405: 1-9. https://doi.org/10.1016/j.gene.2007.07.035
  18. Bae, J. S., I. Kim, H. D. Sohn, and B. R. Jin (2004) The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol. Phylogenet. Evol. 32: 978-985. https://doi.org/10.1016/j.ympev.2004.03.009
  19. Li, X., K. Ogoh, N. Ohba, X. Liang, and Y. Ohmiya (2007) Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). Gene 392: 196-205. https://doi.org/10.1016/j.gene.2006.12.017
  20. Cho, Y. H. (2008) Construction of insect sequence data base and new pipeline system for expressed sequence tag analysis. Ph. D. Thesis. Jeonnam National University, Gwang-ju, Korea.
  21. Zhou, Y. and L. F. Landweber (2007) BLASTO: a tool for searching orthologous groups. Nucleic Acids Res 35: W678-82. https://doi.org/10.1093/nar/gkm278
  22. Friedrich, M. and N. Muquim (2003) Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Mol. Phylogenet. Evol. 26: 502-512. https://doi.org/10.1016/S1055-7903(02)00335-4
  23. Adarsh Gupta, K., Kazuei Mita, Kallare P. Arunkumar, and Javaregowda Nagaraju (2015) Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama, Scientific Reports 5: doi:10.1038/srep12706
  24. Fernando E. Vega, Stuart M. Brown, Hao Chen, Eric Shen, Mridul B. Nair, Javier A. Ceja-Navarro, Eoin L. Brodie, Francisco Infante, Patrick F. Dowd, and Arnab Pain (2015) Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei, Scientific Reports 5: doi:10.1038/srep12525
  25. Katie Shanks, S. Senthilarasu, Richard H. ffrench-Constant and Tapas K. Mallick (2015) White butterflies as solar photovoltaic concentrators. Scientific Reports 5: doi:10.1038/srep12267
  26. Kang, D. H, H. H. Kim, W. H. Nam, and H. S. Kim (2015) Stabilization and antifungal activity of isolated symbiotic bacteria from entomopathogenic nematodes. KSBB J. 30: 132-139. https://doi.org/10.7841/ksbbj.2015.30.3.132
  27. Rural Development Administration of Korea, Submission of manuscript. http://www.rda.go.kr. (2007).
  28. Tomita, M., H. Munetsuna, T. Sato, T. Adachi, R. Hino, M. Hayashi, K. Shimizu, N. Nakamura, T. Tamura, and K. Yoshizato (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat. Biotechnol. 21: 52-56. https://doi.org/10.1038/nbt771
  29. Jarvis, D. L. (2003) Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virol. 310: 1-7. https://doi.org/10.1016/S0042-6822(03)00120-X
  30. Toshiki, T., T. Chantal, R. Corinne, K. Toshio, A. Eappen, K. Mari, K. Natuo, T. Jean-Luc, M. Bernard, C. Gerard, S. Paul, F. Malcolm, P. Jean-Claude, and C. Pierre (2000) Germline tranformation of the silkworm Bombyx mori L. using a piggyBac transposon- derived vector. Nat. Biotechnol. 18: 81-84. https://doi.org/10.1038/71978
  31. Iizuka, T., H. Sezutsu, K. Tatematsu, I. Kobayashi, N. Yonemura, K. Uchino, K. Nakajima, K. Kojima, C. Takabayashi, H. Machii, K. Yamada, H. Kurihara, T. Asakura, Y. Nakazawa, A. Miyawaki, S. Karasawa, H. Kobayashi, J. Yamaguchi, N. Kuwabara, T. Nakamura, K. Yoshii, and T. Tamura (2013) Colored fluorescent silk made by transgenic silkworms. Adv. Funct. Mat. 23: 5232-5239. https://doi.org/10.1002/adfm.201300365
  32. Nakade, S., T. Tsubota, Y. Sakane, S. Kume, N. Sakamoto, M. Obara, T. Daimon, H. Sezutsu, T. Yamamoto, T. Sakuma, and K. T. Suzuki (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5: 55-60.
  33. Hinman, M. B., J. A. Jones, and R. V. Lewis (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol. 18: 374-379. https://doi.org/10.1016/S0167-7799(00)01481-5
  34. Moon, M. J., H. Kim, and J. G. Park (2012) Biomimetic analysis on the spider silk apparatus for designing the nanofiber-spinning nozzle. Korean J. Microscopy 42: 67-76. https://doi.org/10.9729/AM.2012.42.2.067
  35. Xia, X. X., Z. G. Qian, C. S. Ki, Y. H. Park, D. L. Kaplan, and S. Y. Lee (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. PNAS U.S.A. 107: 14059-14063. https://doi.org/10.1073/pnas.1003366107
  36. The publishing of Parkmungak. http://terms.naver.com. (2015)
  37. Park, I. G, H. J. Yoon, M. A. Kim, K. Y. Lee, S. B. Lee, and S. J. Jang (2013) Effect on pollinating activities of honeybee (Apis mellifera), bumblebee (Bombus terrestris) and masonbee (Osmia cornifrons) in Japanese apricot field. Kor. J. Apicult. 28: 303-311.
  38. Breznak, J. A. and A. Brune (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487. https://doi.org/10.1146/annurev.en.39.010194.002321
  39. Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park (2006) Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759.
  40. Kim, K. D., D. S. Park, D. H. Shin, B. N. Han, H. W. Oh, Y. N. Youn, and H. Y. Park (2006) Characterization of a ligninase producing strain, Serratia marcescens HY-5 isolated from Sympetrum depressiusculum. Kor. J. Appl. Entomol. 45: 301-307.

Cited by

  1. Effects of Brewer's spent grain (BSG) on larval growth of mealworms, Tenebrio molitor (Coleoptera: Tenebrionidae) vol.32, pp.1, 2016, https://doi.org/10.7852/ijie.2016.32.1.41
  2. 곤충분말 사료를 오리사료에 첨가 시 생산성과 경제성에 대한 평가 vol.28, pp.8, 2019, https://doi.org/10.5322/jesi.2019.28.8.709
  3. 이유자돈 사료 내 동애등에(Hermetia illucens)의 첨가수준이 사양성적, 영양소소화율 및 경제성에 미치는 영향 vol.20, pp.9, 2015, https://doi.org/10.5762/kais.2019.20.9.255